
SOFTWARE ENGINEERING

UNIT I

SOFTWARE
Software is defined as
Instructions
-Programs that when executed provide desired function
Data structures
-Enable the programs to adequately manipulate information
Documents
-Describe the operation and use of the programs.
Definition of Engineering
-Application of science, tools and methods to find cost effective solution to problems

Definition of SOFTWARE ENGINEERING
Software engineering is the application of engineering to the development
of software in a systematic method.

-SE is defined as systematic, disciplined and quantifiable approach for the
development, operation and maintenance of software

Software is the set of instructions encompasses programs that execute within a
computer of any size and architecture, documents that encompass hard-copy
and virtual forms, and data that combine numbers and text. It also includes
representations of pictorial, video, and audio information. Software engineers
can build the software and virtually everyone in the industrialized world uses it
either directly or indirectly. It is so important because it affects nearly every
aspect of our lives and has become pervasive in our commerce, our culture,
and our everyday activities. The steps to build the computer software is as the
user would like to build any successful product, by applying a process that
leads to a high-quality result that meets the needs of the people who will use
the product. From the software engineer’s view, the product is may be the
programs, documents, and data that are computer software. But from the
user’s viewpoint, the product is the resultant information that somehow makes
the user’s world better. Software’s impact on the society and culture continues
to be profound. As its importance grows, the software community continually
attempts to develop technologies that will make it easier, faster, and less
expensive to build high-quality computer programs. Some of these technologies
are targeted at a specific application domain like web-site design and
implementation; others focus on a technology domain such as object oriented
systems and still others are broad-based like operating systems such as
LINUX. 



However, a software technology has to develop useful information. The
technology encompasses a process, a set of methods, and an array of tools
called as software engineering.

A GENERIC VIEW OF PROCESS–A LAYERED TECHNOLOGY

Software engineering encompasses a process, the management of activities,
technical methods, and use of tools to develop software products.
Fritz Bauer defined Software engineering as the “establishment and use of
sound engineering principles in order to obtain economically software that is
reliable and works efficiently on real machines. “
IEEE definition of software engineering (1) the application of a systematic,
disciplined, quantifiable approach to the development, operation, and
maintenance of software; that is, the application of engineering to software. (2)
The study of approaches as in (1). 
We need discipline but we also need adaptability and agility.
Software Engineering is a layered technology as shown below. Any
engineering approach must rest on an organizational commitment to quality.
The bedrock that supports software engineering is a quality focus.

The foundation for S/W eng is the process layer. It is the glue that holds the
technology layers together and enables rational and timely development of
computer S/W.

Process defines a framework that must be established for effective delivery of
S/W eng technology.

The software process forms the basis for management control of software
projects and establishes the context in which technical methods are applied,
work products (models, documents, data, reports, etc.) are produced,
milestones are established, quality is ensured, and change is properly
managed.

S/W eng methods provide the technical “how to’s” for building S/W. Methods
encompass a broad array of tasks that include communication, req. analysis,
design, coding, testing and support.

S/W eng tools provide automated or semi-automated support for the process
and the methods.



When tools are integrated so that info. Created by one tool can be used by
another, a system for the support of S/W development called computer-aided
software engineering is established.

Figure1. Generic View of Process

A PROCESS FRAMEWORK

Software process models can be prescriptive or agile, complex or simple,
all-encompassing or targeted, but in every case, five key activities must occur.
The framework activities are applicable to all projects and all application
domains, and they are a template for every process model.



Each framework activity is populated by a set of S/W eng actions –a collection
of related tasks that produces a major S/W eng work product (design is a S/W
eng action). Each action is populated with individual work tasks that
accomplish some part of the work implied by the action.
The following generic process framework is applicable to the vast majority of
S/W projects.
Communication: involves heavy communication with the customer (and
other stakeholders) and encompasses requirements gathering.
Planning: Describes the technical tasks to be conducted, the risks that are
likely, resources that will be required, the work products to be produced and a
work schedule.
Modeling: encompasses the creation of models that allow the developer and
customer to better understand S/W req. and the design that will achieve those
req.
Construction: combines code generation and the testing required uncovering
errors in the code.
Deployment: deliver the product to the customer who evaluates the delivered
product and provides feedback.

Each S/W eng action is represented by a number of different task sets –each a
collection of S/W eng work tasks, related work products, quality assurance
points, and project milestones.
The task set that best accommodates the needs of the project and the
characteristics of the team is chosen.
The framework described in the generic view of S/W eng is complemented by a
number of umbrella activities. Typical activities include:
S/W project tracking and control: allows the team to assess progress
against the project plan and take necessary action to maintain schedule.
Risk Management: Assesses the risks that may affect the outcome of the
project or the quality.
Software quality assurance: defines and conducts the activities required to
ensure software quality. 
Formal Technical Review: uncover and remove errors before they propagate
to the next action.
Measurement: defines and collects process, project, and product measures
that assist the team in delivering S/W that meets customers’ needs.
Software configuration management: Manages the effect of change
throughout the S/W process
Reusability management: defines criteria for work product reuse.
Work product preparation and production: encompasses the activities
required to create work products such as models, documents, etc.



PROCESS MODELS 
 The Waterfall Model 

The classical waterfall model is intuitively the most obvious way to
develop software. Though the classical waterfall model is elegant and
intuitively obvious, it is not a practical model in the sense that it can not
be used in actual software development projects. Thus, this model can be
considered to be a theoretical way of developing software. But all other
life cycle models are essentially derived from the classical waterfall
model. So, in order to be able to appreciate other life cycle models it is
necessary to learn the classical waterfall model. 
Classical waterfall model divides the life cycle into the following phases
as shown in fig. 
Feasibility Study 
The main aim of feasibility study is to determine whether it would be
financially and technically feasible to develop the product. 
 At first project managers or team leaders try to have a rough
understanding of what is required to be done by visiting the client side.
They study different input data to the system and output data to be
produced by the system. They study what kind of processing is needed to
be done on these data and they look at the various constraints on the
behavior of the system. 



After they have an overall understanding of the problem they investigate
the different solutions that are possible. Then they examine each of the
solutions in terms of what kind of resources required, what would be the
cost of development and what would be the development time for each
solution. 
Based on this analysis they pick the best solution and determine
whether the solution is feasible financially and technically. They check
whether the customer budget would meet the cost of the product and
whether they have sufficient technical expertise in the area of
development. 

Requirements Analysis and Specification 
The aim of the requirements analysis and specification phase is to
understand the exact requirements of the customer and to document
them properly. This phase consists of two distinct activities, namely 
Requirements gathering and analysis, and 
Requirements specification 
The goal of the requirements gathering activity is to collect all relevant
information from the customer regarding the product to be developed.
This is done to clearly understand the customer requirements so that
incompleteness and inconsistencies are removed. 
The requirements analysis activity is begun by collecting all relevant data
regarding the product to be developed from the users of the product and
from the customer through interviews and discussions. After all
ambiguities, inconsistencies, and incompleteness have been resolved and
all the requirements properly understood, the requirements specification
activity can start. During this activity, the user requirements are
systematically organized into a Software Requirements Specification
(SRS) document. 
The customer requirements identified during the requirements gathering
and analysis activity are organized into a SRS document. The important 
components of this document are functional requirements, the
nonfunctional requirements, and the goals of implementation.

Design 
The goal of the design phase is to transform the requirements specified
in the SRS document into a structure that is suitable for implementation
in some programming language. In technical terms, during the design
phase the software architecture is derived from the SRS document. Two
distinctly different approaches are available: the traditional design
approach and the object-oriented design approach. 



Traditional design approach 
Traditional design consists of two different activities; first a structured
analysis of the requirements specification is carried out where the
detailed structure of the problem is examined. This is followed by a
structured design activity. During structured design, the results of
structured analysis are transformed into the software design. 
Object-oriented design approach 
In this technique, various objects that occur in the problem domain and
the solution domain are first identified, and the different relationships
that exist among these objects are identified. The object structure is
further refined to obtain the detailed design. 
Coding and Unit Testing 
The purpose of the coding and unit testing phase (sometimes called the
implementation phase) of software development is to translate the
software design into source code. Each component of the design is
implemented as a program module. The end-product of this phase is a
set of program modules that have been individually tested. 
During this phase, each module is unit tested to determine the correct
working of all the individual modules. It involves testing each module in
isolation as this is the most efficient way to debug the errors identified at
this stage.
Integration and system testing: -
Integration of different modules is undertaken once they have been
coded and unit tested. During the integration and system testing phase,
the modules are integrated in a planned manner. The different modules
making up a software product are almost never integrated in one shot.
Integration is normally carried out incrementally over a number of steps.
During each integration step, the partially integrated system is tested
and a set of previously planned modules are added to it. Finally, when all
the modules have been successfully integrated and tested, system testing
is carried out. The goal of system testing is to ensure that the developed
system conforms to its requirements laid out in the SRS document.
System testing usually consists of three different kinds of testing
activities: 
α –testing: It is the system testing performed by the development team. 
β –testing: It is the system testing performed by a friendly set of
customers.

acceptance testing: It is the system testing performed by the customer
himself after the product delivery to determine whether to accept or
reject the delivered product. 



Maintenance
Maintenance of a typical software product requires much more than the
effort necessary to develop the product itself. Many studies carried out in
the past confirm this and indicate that the relative effort of development
of a typical software product to its maintenance effort is roughly in the
40:60 ratio.
Maintenance involves performing any one or more of the following three
kinds of activities:
Correcting errors that were not discovered during the product
development phase. This is called corrective maintenance. 
Improving the implementation of the system, and enhancing the
functionalities of the system according to the customer’s requirements.
This is called perfective maintenance.
Porting the software to work in a new environment. For example, porting
may be required to get the software to work on a new computer platform
or with a new operating system. This is called adaptive maintenance.

Incremental Process Models
The process models in this category tend to be among the most widely used (and
effective) in the industry.

a. The Incremental Model

incremental model combines elements of the waterfall model applied in an
iterative fashion. The model applies linear sequences in a staggered fashion as
calendar time progresses.



Each linear sequence produces deliverable “increments” of the software. (Ex: a
Word Processor delivers basic file mgmt., editing, in the first increment; more
sophisticated editing, document production capabilities in the 2ndincrement;
spelling and grammar checking in the 3rdincrement.
When an increment model is used, the 1stincrement is often a core product. The
core product is used by the customer.
As a result of use and / or evaluation, a plan is developed for the next
increment.
The plan addresses the modification of the core product to better meet the needs
of the customer and the delivery of additional features and functionality.
The process is repeated following the delivery of each increment, until the
complete product is produced.
If the customer demands delivery by a date that is impossible to meet, suggest
delivering one or more increments by that date and the rest of the Software later.

b. The RAD Model

Rapid Application Development(RAD) is an incremental software process model that
emphasizes a short development cycle.
RAD is a “high-speed” adaptation of the waterfall model, in which rapid
development is achieved by using a component based construction approach.
If requirements are well understood and project scope is constrained, the RAD
process enables a development team to create a fully functional system within a
short period of time.

What are the drawbacks of the RAD model? 
1. For large, but scalable projects, RAD requires sufficient human resources to
create the right number of RAD teams.

2. If developers and customers are not committed to the rapid-fire activities
necessary to complete the system in a much abbreviated time frame, RAD
project will fail. 
3. If a system cannot properly be modularized, building the components
necessary for RAD will be problematic.





EVOLUTIONARY PROCESS MODELS 
Software evolves over a period of time; business and product requirements often
change as development proceeds, making a straight-line path to an end product
unrealistic. Software Engineering needs a process model that has been explicitly
designed to accommodate a product that evolves over time. Evolutionary process
models are iterative. They produce increasingly more complete versions of the
Software with each iteration. 
a. Prototyping 

Customers often define a set of general objectives for Software, but doesn’t identify
detailed input, processing, or input requirements. Prototyping paradigm assists
the Software engineering and the customer to better understand what is to be
built when requirements are fuzzy. 

EVOLUTIONARY PROCESS MODELS 
The prototyping paradigm begins with communication where requirements and
goals of Software are defined. Prototyping iteration is planned quickly and
modeling in the form of quick design occurs. The quick design focuses on a
representation of those aspects of the Software that will be visible to the customer
“Human interface”. The quick design leads to the Construction of the Prototype.

The prototype is deployed and then evaluated by the customer. Feedback is used
to refine requirements for the Software. Iteration occurs as the prototype is tuned
to satisfy the needs of the customer, while enabling the developer to better
understand what needs to be done. The prototype can serve as the “first system”.
Both customers and developers like the prototyping paradigm as users get a feel



for the actual system, and developers get to build Software immediately. Yet,
prototyping can be problematic:



1.The customer sees what appears to be a working version of the Software,
unaware that the prototype is held together “with chewing gum. “Quality,
long-term maintainability.” When informed that the product is a prototype, the
customer cries foul and demands that few fixes be applied to make it a working
product. Too often, Software development management relents.
2.The developer makes implementation compromises in order to get a prototype
working quickly. An inappropriate O/S or programming language used simply b/c
it’s available and known. After a time, the developer may become comfortable with
these choices and forget all the reasons why they were inappropriate.

The key is to define the rules of the game at the beginning. The customer and the
developer must both agree that the prototype is built to serve as a mechanism for
defining requirements.
b. The Spiral Model

The spiral model is an evolutionary Software process model that couples the
iterative nature of prototyping with the controlled and systematic aspects of the
waterfall model.
It has two distinguishing features:

a. A cyclic approach for incrementally growing a system’s degree of definition
and implementation while decreasing its degree of risk.

b. A set of anchor point milestones for ensuring stakeholder commitment to feasible
and mutually satisfactory solutions.

Using the spiral model, Software is developed in a series of evolutionary releases.
During early stages, the release might be a paper model or prototype. During later
iterations, increasingly more complete versions of the engineered system are
produced. A spiral model is divided into a set of framework activities divided by
the Software engineering team. As this evolutionary process begins, the Software
team performs activities that are implied by a circuit around the spiral in a
clockwise direction, beginning at the center. Risk is considered as each revolution
is made.
Anchor-point milestones–a combination of work products and conditions that are
attained along the path of the spiral-are noted for each evolutionary pass.
The first circuit around the spiral might result in the development of a product
specification; subsequent passes around the spiral might be used to develop a
prototype and then progressively more sophisticated versions of the Software.
Each pass through the planning region results in adjustments to the project plan.
Cost and schedule are adjusted based on feedback derived from the customer
after delivery. Unlike other process models that end when Software is delivered,
the spiral model can be adapted to apply throughout the life of the Software.



The concurrent development model
The concurrent development model, sometimes called concurrent engineering,
can be represented schematically as a series of framework activities, Software
engineering actions of tasks, and their associated states. The concurrent model
is often more appropriate for system engineering projects where different
engineering teams are involved.





Figure above provides a schematic representation of one Software engineering
task within the modeling activity for the concurrent process model. The activity
–modeling-may be in any one of the states noted at any given time. All activities
exist concurrently but reside in different states. For example, early in the project
the communication activity has completed its first iteration and exists in the
awaiting changes state. The modeling activity which existed in the none state
while initial communication was completed now makes a transition into
underdevelopment state. If, however, the customer indicates the changes in
requirements must be made, the modeling activity moves from the under
development state into the awaiting changes state. The concurrent process
model defines a series of events that will trigger transitions from state to state for
each of the Software engineering activities, actions, or tasks.
SPECIALIZED PROCESS MODELS

a. Component Based Development

Commercial off-the-shelf (COTS) Software components, developed by vendors who
offer them as products, can be used when Software is to be built. These
components provide targeted functionality with well-defined interfaces that enable
the component to be integrated into the Software. The component-based
development model incorporates many of the characteristics of the spiral model.
The component-based development model incorporates the following steps:
Available component-based products are researched and evaluated for the
application domain in question.
Component integration issues are considered.
Software architecture is designed to accommodate the components.
Components are integrated into the architecture.
Comprehensive testing is conducted to ensure proper functionality.

The component-based development model leads to Software reuse, and reusability
provides Software engineers with a number of measurable benefits.

b. The Formal Methods Model

The Formal Methods Model encompasses a set of activities that leads to formal
mathematical specifications of Software. Formal methods enable a Software
engineer to specify, develop, and verify a computer-based system by applying a
rigorous, mathematical notation. A variation of this approach, called clean-room
Software engineering is currently applied by some software development
organizations.



Although not a mainstream approach, the formal methods model offers the
promise of defect-free Software. Yet, concern about its applicability in a business
environment has been voiced:
The development of formal models is currently quite time-consuming and
expensive.
B/C few software developers have the necessary background to apply formal
methods, extensive training is required.
It is difficult to use the methods as a communication mechanism for technically
unsophisticated customers.

THE UNIFIED PROCESS
A “use-case driven, architecture-centric, iterative and incremental” software
process closely aligned with the Unified Modeling Language (UML).The UP is an
attempt to draw on the best features and characteristics of conventional software
process models, but characterize them in a way that implements many of the best
principles of agile software development. The UP recognizes the importance of
customer communication and streamlined methods for describing the customer’s
view of a system. It emphasizes the important role of software architecture and
“helps the architect focus on the right goals, such as understandability, reliance to
future changes, and reuse.”UML provides the necessary technology to support
Object Oriented Software Engineering practice, but it doesn’t provide the process
framework to guide project teams in their application of the technology. The UML
developers developed the Unified Process, a framework Object Oriented Software
Engineering using UML.
Phases of the Unified Process
The figure below depicts the phases of the UP and relates them to the generic
activities.





The Inception phase of the UP encompasses both customer communication and
planning activities. By collaborating with the customer and end-users, business
requirements for the software are identified, a rough architecture for the system is
proposed, and a plan for the iterative, incremental nature of the ensuing project is
developed. software increment Release Inception Elaboration construct ion transition
production 
A use-case describes a sequence of actions that are performed by an actor (person,
machine, another system) as the actor interacts with the Software. The elaboration
phase encompasses the customer communication and modeling activities of the
generic process model. Elaboration refines and expands the preliminary use-cases
that were developed as part of the inception phase and expands the architectural
representation to include five different views of the software - the use-case model,
the analysis model, the design model, the implementation model, and the
deployment model. 
The construction phase of the UP is identical to the construction activity defined for
the generic software process. Using the architectural model as input, the
construction phase develops or acquires the software components that will make
each use-case operational for end-users. The
transition phase of the UP encompasses the latter stages of the generic
construction activity and the first part of the generic deployment activity. Software
is given to end-users for beta testing, and user feedback reports both defects and
necessary changes. At the conclusion of the transition phase, the software
increment becomes a usable software release “user manuals, trouble-shooting
guides, and installation procedures.) The production phase of the UP coincides
with the development activity of the generic process. The on-going use of the
software is monitored, support for the operating environment is provided and
defect reports and requests for changes are submitted and evaluated.
A Software Engineering workflow is distributed across all UP phases.



Agile Processes

Idea of modeling in a light weight fashion to deliver documentation good
enough for right now.

-speed up or by pass one or more life cycle phases

-less formal and scope is reduced

-used for time critical applications

-used in organizations that employ disciplined methods

What is Agile Methodology?
AGILE methodology is a practice that promotes continuous iteration of
development and testing throughout the software development lifecycle of the
project. Both development and testing activities are concurrent unlike the
Waterfall model

The agile software development emphasizes on four core values.
1. Individual and team interactions over processes and tools
2. Working software over comprehensive documentation
3. Customer collaboration over contract negotiation
4. Responding to change over following a plan



Agile Methodology

There are various methods present in agile testing, and those are listed below:
Scrum
SCRUM is an agile development method which concentrates specifically on how
to manage tasks within a team-based development environment. Basically,
Scrum is derived from activity that occurs during a rugby match. Scrum
believes in empowering the development team and advocates working in small
teams (say- 7 to 9 members). It consists of three roles, and their



responsibilities are explained as follows:

 Scrum Master
 Master is responsible for setting up the team, sprint meeting and

removes obstacles to progress
 Product owner

 The Product Owner creates product backlog, prioritizes the backlog
and is responsible for the delivery of the functionality at each
iteration

 Scrum Team
 Team manages its own work and organizes the work to complete

the sprint or cycle
Product Backlog
This is a repository where requirements are tracked with details on the no of
requirements to be completed for each release. It should be maintained and
prioritized by Product Owner, and it should be distributed to the scrum team.
Team can also request for a new requirement addition or modification or
deletion
Scrum Practices
Practices are described in detailed:
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Software Project Estimation

Decomposition Techniques

-Problem based (LOC, Size oriented, Direct method)

-Process based (FP, function oriented, Indirect method)

Productivity Measures

Size related measures based on some output from the software process. This
may be lines of delivered source code(LOC), object code instructions, etc.

Function-related measures based on an estimate of the functionality of the
delivered software. Function-points(FP) are the best known of this type of
measure

Lines of Code (LOC)

What's  a line of code?



 The measure was first proposed when programs were typed on
cards with one line per card

 How does this correspond to statements as in Java which can span
several lines or where there can be several statements on one line

What programs should be counted as part of the system?

Assumes linear relationship between system size and volume of
documentation

Function Points

Based on a combination of program characteristics

 external inputs and outputs

 user interactions

 external interfaces

 files used by the system

A weight is associated with each of these

The function point count is computed by multiplying each raw count by the
weight and summing all values

Empirical Model

Decomposition Techniques

Problem based decomposition

LOC – Direct measure, White box measure, Internal Specification based

FP - Indirect measure, Black box measure, External Specification based

Empirical Estimation Model

Which uses empirically derived formulas for prediction based on LOC and FP

Cost Constructive Model by Barry Boehm based on LOC



Hierarchy of the model

1.Basic COCOMO

2.Intermediate COCOMO

3.Advanced COCOMO

Basic COCOMO model gives basic idea

Computes software development efforts and duration as a function of    
program size/profit size which is expressed as LOC

Gives Rough Idea about Estimation

All computation based on size of project

E = ab (KLOC)bb  in Person-Month PM

D = Cb (E) db months

N (No.of people in team) = E / D persons

Intermediate COCOMO size + cost drivers considered

Computes software development efforts in terms of function of  program size
with a set of cost drivers which includes subjective assessment of the
driver(personal attributes,project,product,hardware)

Cost driver value plays a major role in computation of effort

It ranges from 0.7 to 1.3 & 0.9 (<2)

Provides exact evaluation required for the project

E = ai (KLOC) bi x EAF

Advanced COCOMO



Incorporates characteristics of intermediate version with the subjective
evaluation of cost drivers impact on the software process activities
(Analysis,Design,Coding,Testing)

Risk analysis and management
What is it? Risk analysis and management are a series of steps that help a
software team to understand and manage uncertainty. 

Establish a contingency plan should the problem actually occur.

Who does it? Everyone involved in the software process—managers, software
engineers, and customers— participate in risk analysis and management.

Why is it important? Be Prepared. Understanding the risks and taking
proactive measures to avoid or manage them—is a key element of good
software project management.

What are the steps? Recognizing what can go wrong is the first step, called
“risk identification.”

Next, each risk is analyzed to determine the likelihood that it will occur and the
damage that it will do if it does occur. Once this information is established,
risks are ranked, by probability and impact. Finally, a plan is developed to
manage those risks with high probability and high impact.

What is the work product? A risk mitigation, monitoring, and management
(RMMM) plan or a set of risk information sheets is produced.



The RMMM should be revisited as the project proceeds to ensure that risks are
kept up to date. Contingency plans for risk management should be realistic.

Risk identification
Risk identification is a systematic attempt to specify threats to the project plan
(estimates, schedule, resource loading, etc.). By identifying known and
predictable risks, the project manager takes a first step toward avoiding them
when possible and controlling them when necessary.

There are two distinct types of risks for each of the categories that have been
presented : generic risks and product-specific risks. 

Generic risks are a potential threat to every software project. 

Product-specific risks can be identified only by those with a clear
understanding of the technology, the people, and the environment that is
specific to the project at hand. 

To identify product-specific risks, the project plan and the software statement
of scope are examined and an answer to the following question is developed:
"What special characteristics of this product may threaten our project plan?"
One method for identifying risks is to create a risk item checklist. The checklist
can be used for risk identification and focuses on some subset of known and
predictable risks in the following generic subcategories:
• Product size—risks associated with the overall size of the software to be built
or modified.
• Business impact—risks associated with constraints imposed by management
or the marketplace.
• Customer characteristics—risks associated with the sophistication of the
customer and the developer's ability to communicate with the customer in a
timely manner.
• Process definition—risks associated with the degree to which the software
process has been defined and is followed by the development organization.
• Development environment—risks associated with the availability and quality
of the tools to be used to build the product.
• Technology to be built—risks associated with the complexity of the system to
be built and the "newness" of the technology that is packaged by the system.
• Staff size and experience—risks associated with the overall technical and
project experience of the software engineers who will do the work.



The risk item checklist can be organized in different ways. Questions relevant
to each of the topics can be answered for each software project. The answers to
these questions allow the planner to estimate the impact of risk. A different
risk item checklist format simply lists characteristics that are relevant to each
generic subcategory. Finally, a set of “risk components and drivers" are listed
along with their probability of occurrence. Drivers for performance, support,
cost, and schedule are discussed in answer to later questions.

A number of comprehensive checklists for software project risk have been
proposed in the literature. These provide useful insight into generic risks for
software projects and should be used whenever risk analysis and management
is instituted. However, a relatively short list of questions can be used
to provide a preliminary indication of whether a project is “at risk.”

Developing a Risk Table
A risk table provides a project manager with a simple technique for risk
projection.

Risks
PS-Product Size 
BU-Business Impact
CU – Customer Characteristics 
DE - Development Enivronment
ST-Staff size and Experience

Risks Ca te
gory

Probab
ility

Impact RMMM

Size estimate may be significantly low
Larger number of users than planned
Less reuse than planned
End-users resist system
Delivery deadline will be tightened
Funding will be lost
Customer will change requirements
Technology will not meet expectations
Lack of training on tools
Staff inexperienced
Staff turnover will be high

PS
PS
PS
BU
BU
CU
PS
TE
DE
ST
ST

60%
30%
70%
40%
50%
40%
80%
30%
80%
30%
60%

Critical
Marginal
Critical
Marginal
Critical
Catastrophic
Critical
Catastrophic
Marginal
Critical
Critical

Figure 1. Sample risk table prior to sorting

RMMM PLAN



The RMMM plan documents all work performed as part of risk analysis and is
used by the project manager as part of the overall project plan.
Some software teams do not develop a formal RMMM document. Rather, each
risk is documented individually using a risk information sheet (RIS). In most
cases, the RIS is maintained using a database system, so that creation and
information entry, priority ordering, searches, and other analysis may be
accomplished easily.

PROJECT SCHEDULING
The objective of software project scheduling is to create a set of engineering
tasks that will enable to complete the job in time.

 You’ve selected an appropriate process model. 
 You’ve identified the software engineering tasks that have to be

performed.
 You estimated the amount of work and the number of people, you know

the deadline, you’ve even considered the risks.
 Now it’s time to connect the dots. That is, you have to create a network of

software engineering tasks that will enable you to get the job done on
time. 

 Once the network is created, you have to assign responsibility for each
task, make sure it gets done, and adapt the network as risks become
reality. 

Basic Concepts.

 An unrealistic deadline established by someone outside the software
development group and forced on managers and practitioner's within the
group.

 Changing customer requirements that are not reflected in schedule
changes.

 An honest underestimate of the amount of effort and/or the number of
resources that will be required to do the job.

 Predictable and/or unpredictable risks that were not considered when
the project commenced.

 Technical difficulties that could not have been foreseen in advance.
 Human difficulties that could not have been foreseen in advance.
 Miscommunication among project staff that results in delays.
 A failure by project management to recognize that the project is falling

behind schedule and a lack of action to correct the problem.



Basic Principles

1. Compartmentalization: The project must be compartmentalized into a  
number of manageable activities and tasks.

2. Interdependency: The interdependency of each compartmentalized 
activity or task must be determined.

3. Time allocation: Each task to be scheduled must be allocated some 
number of work units (e.g., person‐days of effort).

4. Effort validation: The project manager must ensure that no more than 
the allocated number of people have been scheduled at any given time.

5. Defined responsibilities: Every task that is scheduled should be 
assigned to a specific team member.

6. Defined outcomes: Every task that is scheduled should have a defined 
outcome.

7. Defined milestones: Every task or group of tasks should be associated 
with a project milestone. A milestone is accomplished when one or more
work products has been reviewed for quality and has been approved.

Time-line chart

 When creating a software project schedule, the planner begins with a set
of tasks.

 If automated tools are used, the work breakdown is input as a task
network or task outline. 

 Effort, duration, and start date are then input for each task. In addition,
tasks may be assigned to specific individuals.

 As a consequence of this input, a timeline chart is generated also called
ganttchart.

 A timeline chart can be developed for the entire project. Alternatively,
separate charts can be developed for each project function or for each
individual working on the project.



UNIT - II

System Engineering

Software engineering occurs as a consequence of a process called system
engineering. Instead of concentrating solely on software, system engineering
focuses on a variety of elements, analyzing, designing, and organizing those



elements into a system that can be a product, a service, or a technology for the
transformation of information or control.

The system engineering process is called business process engineering when the
context of the engineering work focuses on a business enterprise. When a
product (in this context, a product includes everything from a wireless
telephone to an air traffic control system) is to be built, the process is called
product engineering.

COMPUTER-BASED SYSTEMS

The elements combine in a variety of ways to transform information.
Eg. Marketing – transforms raw sales into purchase of product

Computer based system make use of variety of system elements:
Software. Computer programs, data structures, and related documentation
that serve to effect the logical method, procedure, or control that is required.
Hardware. Electronic devices that provide computing capability, the
interconnectivity devices (e.g., network switches, telecommunications devices)
that enable the flow of data, and electromechanical devices (e.g., sensors,
motors, pumps) that provide external world function.
People. Users and operators of hardware and software.
Database. A large, organized collection of information that is accessed via
software.
Documentation. Descriptive information (e.g., hardcopy manuals, on-line help
files, Web sites) that portrays the use and/or operation of the system.
Procedures. The steps that define the specific use of each system element or
the procedural context in which the system resides.

Figure1.System Engineering Hierarchy



Stated in a slightly more formal manner, the world view (WV) is composed of a
set of domains (Di), which can each be a system or system of systems in its
own right.
WV = {D1, D2, D3, . . . , Dn}
Each domain is composed of specific elements (Ej) each of which serves some
role in accomplishing the objective and goals of the domain or component:
Di = {E1, E2, E3, . . . , Em}
Finally, each element is implemented by specifying the technical components
(Ck) that achieve the necessary function for an element:
Ej = {C1, C2, C3, . . . , Ck}
In the software context, a component could be a computer program, a reusable
program component, a module, a class or object, or even a programming
language statement.



System Modeling

System engineering is a modeling process. Whether the focus is on the world
view or the detailed view, the engineer creates models that 
• Define the processes that serve the needs of the view under consideration.
• Represent the behavior of the processes and the assumptions on which the
behavior is based.
• Explicitly define both exogenous and endogenous input3 to the model.
• Represent all linkages (including output) that will enable the engineer to
better understand the view.

To construct a system model, the engineer should consider a number of
restraining factors:

Assumptions that reduce the number of possible permutations and variations,
thus enabling a model to reflect the problem in a reasonable manner. 

2. Simplifications that enable the model to be created in a timely manner. 

3. Limitations that help to bound the system. 

4. Constraints that will guide the manner in which the model is created and the
approach taken when the model is implemented. 

5. Preferences that indicate the preferred architecture for all data, functions,
and technology. 

The system engineer simply modifies the relative influence of different system
elements (people, hardware, software) to derive models of each type.

System Simulation

To avoid the reactive system, system simulation is used.

Software tools for system modeling and simulation are being used to help
to eliminate surprises when reactive, computer-based systems are built. These
tools are applied during the system engineering process, while the role of
hardware and software, databases and people is being specified. Modeling and
simulation tools enable a system engineer to "test drive" a specification of the
system.

BUSINESS PROCESS ENGINEERING:



The goal of business process engineering (BPE) is to define architectures that will enable a business to use information effectively.

Business process engineering is one approach for creating an overall plan for implementing the computing architecture.
Three different architectures must be analyzed and designed within the context
of business objectives and goals:
• data architecture
• applications architecture
• technology infrastructure

The data architecture provides a framework for the information needs of a
business or business function. The individual building blocks of the
architecture are the data objects that are used by the business. A data object
contains a set of attributes that define some aspect, quality, characteristic, or
descriptor of the data that are being described. For example, an information
engineer might define the data object customer.

To more fully describe customer, the following attributes are defined:
Object: Customer
Attributes:
name
company name
job classification and purchase authority
business address and contact information
product interest(s)
past purchase(s)
date of last contact
status of contact

Once a set of data objects is defined, their relationships are identified. A
relationship indicates how objects are connected to one another.

As an example consider the objects: customer, and product A. The two objects
can be connected by the relationship purchases; that is, a customer purchases
product A or product A is purchased by a customer.

The application architecture encompasses those elements of a system that
transform objects within the data architecture for some business purpose. In
the context of this book, we consider the application architecture to be the
system of programs (software) that performs this transformation. However, in a
broader context, the application architecture might incorporate the role of
people (who are information transformers and users) and business procedures
that have not been automated.



The technology infrastructure provides the foundation for the data and
application architectures. The infrastructure encompasses the hardware and
software that are used to support the application and data. This includes
computers, operating systems, networks, telecommunication links, storage
technologies, and the architecture (e.g., client/server) that has been designed
to implement these technologies.

Figure. Business Process Engineering Hierarchy

The first step information strategy planning (ISP). ISP views the entire business
as an entity and isolates the domains of the business that are important to the
overall enterprise. ISP defines the data objects that are visible at the enterprise
level, their relationships, and how they flow between the business domains.

BAA views the business area as an entity and isolates the business functions
and procedures that enable the business area to meet its objectives and goals.
BAA, like ISP, defines data objects, their relationships, and how data flow.



A business system design (BSD) step, the basic requirements of a specific
information system are modeled and these requirements are translated into
data architecture, applications architecture, and technology infrastructure.

The final BPE step—construction and integration focuses on implementation
detail.

PRODUCT ENGINEERING

The goal of product engineering is to translate the customer’s desire for a set of
defined capabilities into a working product. To achieve this goal, product
engineering—like business process engineering—must derive architecture and
infrastructure. The architecture encompasses four distinct system components:
software, hardware, data (and databases), and people. A support infrastructure
is established and includes the technology required to tie the components
together and the information (e.g., documents, CD-ROM, video) that is used to
support the components.



Figure. Product Engineering Hierarchy

The world view is achieved through requirements engineering.

The overall requirements of the product are elicited from the customer. These
requirements encompass information and control needs, product function and
behavior, overall product performance, design and interfacing constraints, and
other special needs. 

Once these requirements are known, the job of requirements engineering
is to allocate function and behavior to each of the four components noted
earlier. Once allocation has occurred, system component engineering
commences. 

System component engineering is actually a set of concurrent activities that
address each of the system components separately: software engineering,
hardware engineering, human engineering, and database engineering. 

Each of these engineering disciplines takes a domain-specific view, but it is
important to note that the engineering disciplines must establish and maintain
active communication with one another. Part of the role of requirements
engineering is to establish the interfacing mechanisms that will enable this to
happen.

The element view for product engineering is the engineering discipline itself
applied to the allocated component. 

The analysis step models allocated requirements into representations of data,
function, and behavior. Design maps the analysis model into data,
architectural, interface, and software component-level designs.



REQUIREMENTS ENGINEERING

 Requirement is a condition possessed by the software component in order to
solve a real world problems.
 Requirement describe how a system should act, appear or perform.
 IEEE defines a requirement as: “A condition that must be possessed by a
system to satisfy a contract specification, standard or other formally imposed
document.

Principles of Requirement Engineering

i. Understand the problem before you start to create the analysis model
 There is a tendency to rush to a solution, even before the problem is
understood.
 This often leads to elegant software that solves the wrong problem.
ii. Develop prototypes that enable a user to understand how human-machine
interaction will occur
Since the perception of the quality of software is often is based on perception of
time “friendliness” of the interface, prototyping (and the interaction that results) is
highly recommended.
iii. Record the origin and the reason for every document
This is the step in establishing traceability back to the customer.
iv. Use multiple views of requirement
 Building data, functional and behavioral models provides software engineer
three different views.
 This reduces the chances of missing errors.
v. Prioritize the requirements
Requirements should be followed for the tight implementation and delivery of the
product.
vi. Work to eliminate ambiguity
The use of more technical reviews should be used for no ambiguity.

Requirement Engineering Task

The requirement engineering process tasks are achieved through seven distinct
functions:
i. Inception



 Inception is also known as the beginning.
 Inception needs various questions to be answered.
 How does a software project get started?
ii. Elicitation
 This is the process by which users of the system are interviewed in order to
reveal
and understand their requirements.
 This sub-phase involves a high level of client input.
iii. Elaboration

The most relevant, mission critical requirements are emphasized and developed
first.
 This ensures the final product satisfies all of the important requirements, and
does so in the most time and cost efficient manner possible.
 Other “should-have” and “nice-to-have” requirements can be relegated to future
phases, should they be necessary.
iv. Negotiation
 A milestone within that phase may consist of implementing Use Case x, y and z
.
 By scheduling the project in this iterative way, our client has a good
understanding of when certain things will be delivered and when their input will
be required.
 Additionally, features are generally developed in a “vertical” fashion; once Use
Case x has been developed, its unabridged functionality can be demonstrated to
the client.
 In this way, our client has a clear understanding of where development time is
being spent, and potential issues can be caught early and dealt with efficiently.
v. Specification
 This is the process by which requirements and their analyses are committed to
some formal media.
 For this project, we would generate four documents during this sub-phase:
 Use Case document: a use case is a description of the system’s response as a
result of a specific request from a user. Each use case will cover certain
requirements discovered during elicitation and analysis. For example, a use case
may cover “Adding a New Employee”, or “Generating Site Report”.
 Interface prototypes: an interface prototype is a rough representation of
certain
critical functionality, recorded as anything from a hand-drawn image to an
elaborate HTML mock-up. The prototypes are completely horizontal in nature;
they roughly illustrate how the interface for a certain feature will look and what
information is accessible but they will have no back end (vertical) functionality.
 Architecture Diagram: an architecture diagram will be generated for developer
use as it is a high level view of how the software will be structured. Only if we feel
it will help in our understanding of the system will this document be created.



 Database Diagram: as with the architecture diagram, a database diagram is
generally created for developer use. Through these final two media, we are
beginning
the shift from words (requirements) to code (software).
vi. Validation
 This is the final phase of the requirements engineering process.
 It involves scrutinizing the documents generated during the specification
sub-phase and ensuring their relevance and validity.
 This must be done by all interested parties so they are in agreement with the
proposed system’s behavior, especially in the case of the Use Case document and
prototypes.

vii. Management
 As requirements are elicited, analyzed, specified and validated, we will be
estimating most features.
 This is an on-going process that will culminate in the delivery of the Project
Estimation and Timeline document.
 This will outline the duration of work required to develop and deliver Phase 2.
 As indicated in the Requirements Analysis sub-phase, Phase 2 will likely consist
of the majority of the “must-have” features; however it is ultimately up to the
client to decide what is most important (even within the “must-have” category),
and this will be developed first.

Initiating Requirements Engineering Process
• Identify stakeholders
• Recognize the existence of multiple stakeholder viewpoints
• Work toward collaboration among stakeholders
• These context-free questions focus on customer, stakeholders, overall goals, and
benefits of the system
o Who is behind the request for work?
o Who will use the solution?
o What will be the economic benefit of a successful solution?
o Is there another source for the solution needed?
• The next set of questions enable developer to better understand the problem and
the customer's perceptions of the solution
o How would you characterize good output form a successful solution?
o What problem(s) will this solution address?
o Can you describe the business environment in which the solution will be used?
o Will special performance constraints affect the way the solution is approached?
• The final set of questions focuses on communication effectiveness
o Are you the best person to give "official" answers to these questions?
o Are my questions relevant to your problem?
o Am I asking too many questions?
o Can anyone else provide additional information?
o Should I be asking you anything else?



Eliciting Requirements
• Collaborative requirements gathering
o Meetings attended by both developers and customers
o Rules for preparation and participation are established
o Flexible agenda is used
o Facilitator controls the meeting
o Definition mechanism (e.g., stickers, flip sheets, electronic bulletin board) used
to gauge group consensus
o Goal is to identify the problem, propose solution elements, negotiate
approaches,
and specify preliminary set of solutions requirements
• Quality function deployment (QFD)
o Identifies three types of requirements (normal, expected, exciting)
o In customer meetings function deployment is used to determine value of each
function that is required for the system
o Information deployment identifies both data objects and events that the
system must consume or produce (these are linked to functions)
o Task deployment examines the system behavior in the context of its
environment
o Value analysis is conducted to determine relative priority of each requirement
generated by the deployment activities
• User-scenarios
o Also known as use-cases, describe how the system will be used
o Developers and users create a set of usage threads for the system to be
constructed

Developing Use-Cases
• Each use-case tells stylized story about how end-users interact with the system
under a specific set of circumstances
• First step is to identify actors (people or devices) that use the system in the
context of the function and behavior of the system to be described
o Who are the primary or secondary actors?
o What preconditions must exist before story begins?
o What are the main tasks or functions performed by each actor?
o What extensions might be considered as the story is described?
o What variations in actor interactions are possible?
o What system information will the actor acquire, produce, or change?
o Will the actor need to inform the system about external environment changes?
o What information does the actor desire from the system?
o Does the actor need to be informed about unexpected changes?

Example : Use Case Diagram for Safe home system 



Negotiating Requirements
• Negotiation activities
o Identification of system key stakeholders
o Determination of stakeholders' "win conditions"
o Negotiate to reconcile stakeholders' win conditions into "win-win" result for all
stakeholders (including developers)
• Key points
o It's not a competition
o Map out a strategy
o Listen actively
o Focus on other party's interests
o Don't let it get personal
o Be creative
o Be ready to commit

Requirement Validation
• Is each requirement consistent with overall project or system objective?
• Are all requirements specified at the appropriate level off abstraction?
• Is each requirement essential to system objective or is it an add-on feature?
• Is each requirement bounded and unambiguous?
• Do you know the source for each requirement?
• Do requirements conflict with one another?
• Is the requirement achievable in the proposed technical environment for the
system or product?



• Is each requirement testable?
• Does the requirements model reflect the information, function, and behavior of
the system to be built?
• Has the requirements model been partitioned in a way that exposes more
detailed system information progressively?
• Have all the requirements patterns been properly validated and are they
consistent with customer requirements?

UNIT –III Software Design

Design Concepts

What is it? Design is a meaningful engineering representation of something
that is to be built. It can be traced to a customer’s requirements and at the
same time assessed for quality against a set of predefined criteria for “good”
design. In the software engineering context, design focuses on four major areas
of concern: data, architecture, interfaces, and components. 

Who does it? Software engineers design computer based systems, but the skills
required at each level of design work are different. At the data and architectural
level, design focuses on patterns as they apply to the application to be built. At
the interface level, human ergonomics often dictate our design approach. At the
component level, a “programming approach” leads us to effective data and
procedural designs.

Why is it important? You wouldn’t attempt to build a house without a
blueprint, would you? You’d risk confusion, errors, a floor plan that didn’t
make sense, windows and doors in the wrong place. 



Computer software is considerably more complex than a house; hence, we need
a blueprint— the design.

What are the steps? Design begins with the requirements model. We work to
transform this model into four levels of design detail: the data structure, the
system architecture, the interface representation, and the component level
detail. During each design activity, we apply basic concepts and principles
that lead to high quality.

What is the work product? Ultimately, a Design Specification is produced. The
specification is composed of the design models that describe data, architecture,
interfaces, and components. Each is a work product of the design process.

SOFTWARE DESIGN AND SOFTWARE ENGINEERING

Each of the elements of the analysis model provides information that 
is necessary to create the four design models required for a complete
specification of design. The flow of information during software design is
illustrated in below Figure.

Software requirements, manifested by the data, functional, and behavioral
models, feed the design task. Using one of a number of design methods, the
design task produces a data design, an architectural design, an interface
design, and a component design.

The data design transforms the information domain model created during
analysis into the data structures that will be required to implement the
software. The data objects and relationships defined in the entity relationship
diagram and the detailed data content depicted in the data dictionary provide
the basis for the data design activity.

Part of data design may occur in conjunction with the design of software
architecture. More detailed data design occurs as each software component is
designed.

The architectural design defines the relationship between major structural
elements of the software, the “design patterns” that can be used to achieve the
requirements that have been defined for the system, and the constraints that
affect the way in which architectural design patterns can be applied. 

The architectural design representation—the framework of a computer-based
system—can be derived from the system specification, the analysis model, and
the interaction of subsystems defined within the analysis model.



The interface design describes how the software communicates within itself,
with systems that interoperate with it, and with humans who use it. An
interface implies a flow of information (e.g., data and/or control) and a specific
type of behavior. Therefore, data and control flow diagrams provide much of the
information required for interface design.

The component-level design transforms structural elements of the software
architecture into a procedural description of software components. Information
obtained from the PSPEC, CSPEC, and STD serve as the basis for component
design.

During design we make decisions that will ultimately affect the success of
software construction and, as important, the ease with which software can be
maintained.

But why is design so important?
The importance of software design can be stated with a single word—quality.

Figure. Translating Analysis Model to Software Design

THE DESIGN PROCESS

• The design must implement all of the explicit requirements contained in the
analysis model, and it must accommodate all of the implicit requirements
desired by the customer.



• The design must be a readable, understandable guide for those who generate
code and for those who test and subsequently support the software.
• The design should provide a complete picture of the software, addressing
the data, functional, and behavioral domains from an implementation
perspective.

DESIGN PRINCIPLES

Software design is both a process and a model. 

The design process is a sequence of steps that enable the designer to describe
all aspects of the software to be built.

The design model that is created for software provides a variety of different
views of the computer software.

It begins by representing the totality of the thing to be built and slowly refines
the thing to provide guidance for build each detail.

• The design process should not suffer from “tunnel vision.” A good
designer should consider alternative approaches, judging each based on the
requirements of the problem, the resources available to do the job, and the
design concepts.
• The design should be traceable to the analysis model. Because a single
element of the design model often traces to multiple requirements, it is
necessary to have a means for tracking how requirements have been satisfied
by the design model.
• The design should not reinvent the wheel. Systems are constructed using
a set of design patterns, many of which have likely been encountered before.
These patterns should always be chosen as an alternative to reinvention.
Time is short and resources are limited! Design time should be invested in
representing truly new ideas and integrating those patterns that already exist.
• The design should “minimize the intellectual distance” between the
software and the problem as it exists in the real world.
That is, the structure of the software design should (whenever possible)
mimic the structure of the problem domain.
• The design should exhibit uniformity and integration. A design is uniform
if it appears that one person developed the entire thing. Rules of style
and format should be defined for a design team before design work begins. A
design is integrated if care is taken in defining interfaces between design
components.
• The design should be structured to accommodate change. The design
concepts should enable a design to achieve this principle.



• The design should be structured to degrade gently, even when aberrant
data, events, or operating conditions are encountered. Well designed
software should never “bomb.” It should be designed to accommodate unusual
circumstances, and if it must terminate processing, do so in a graceful
manner.
• Design is not coding, coding is not design. Even when detailed procedural
designs are created for program components, the level of abstraction of
the design model is higher than source code. The only design decisions
made at the coding level address the small implementation details that enable
the procedural design to be coded.
• The design should be assessed for quality as it is being created, not
after the fact. A variety of design concepts and design measures are available
to assist the designer in assessing quality.
• The design should be reviewed to minimize conceptual (semantic)
errors. There is sometimes a tendency to focus on minutiae when the design is
reviewed, missing the forest for the trees. A design team should ensure that
major conceptual elements of the design (omissions, ambiguity, inconsistency)
have been addressed before worrying about the syntax of the design model.

DESIGN CONCEPTS

1) Abstraction
When we consider a modular solution to any problem, many levels of
abstraction can be posed. At the highest level of abstraction, a solution is stated
in broad terms using the language of the problem environment. At lower levels
of abstraction, a more procedural orientation is taken. Problem-oriented
terminology is coupled with implementation- oriented terminology in an effort
to state a solution. Finally, at the lowest level of abstraction, the solution is
stated in a manner that can be directly implemented.

A procedural abstraction is a named sequence of instructions that has a
specific and limited function. An example of a procedural abstraction would be
the word open for a door. Open implies a long sequence of procedural steps
(e.g., walk to the door, reach out and grasp knob, turn knob and pull door, step
away from moving door, etc.).

A data abstraction is a named collection of data that describes a data object.
In the context of the procedural abstraction open, we can define a data
abstraction called door. Like any data object, the data abstraction for door
would encompass a set of attributes that describe the door (e.g., door type,



swing direction, opening mechanism, weight, dimensions). It follows that the
procedural abstraction open would make use of information contained in the
attributes of the data abstraction door. 

Control abstraction is the third form of abstraction used in software design.
Like procedural and data abstraction, control abstraction implies a program
control mechanism without specifying internal details. An example of a control
abstraction is the synchronization semaphore used to coordinate activities in an
operating system.

2) Refinement
Stepwise refinement is a top-down design strategy. A program is developed by
successively refining levels of procedural detail.
A hierarchy is developed by decomposing a macroscopic statement of function
(a procedural abstraction) in a stepwise fashion until programming language
statements are reached.

Refinement is actually a process of elaboration. We begin with a statement of
function (or description of information) that is defined at a high level of
abstraction. That is, the statement describes function or information
conceptually but provides no information about the internal workings of the
function or the internal structure of the information. Refinement causes the
designer to elaborate on the original statement, providing more and more detail
as each successive refinement (elaboration) occurs.

3) Modularity
Software architecture embodies modularity; that is, software is divided into
separately named and addressable components, often called modules, that are
integrated to satisfy problem requirements.

This is a "divide and conquer" conclusion—it's easier to solve a complex
problem when you break it into manageable pieces. The result expressed in the
last Expression has important implications with regard to modularity and
software. It is, in fact, an argument for modularity.

Another important question arises when modularity is considered. How do we
define an appropriate module of a given size? The answer lies in the method(s)
used to define modules within a system. 
1. to evaluate a design method with respect to its ability to define an effective

modular system:



Modular decomposability. If a design method provides a systematic
mechanism for decomposing the problem into sub-problems, it will reduce the
complexity of the overall problem, thereby achieving an effective modular
solution.
Modular composability. If a design method enables existing (reusable) design
components to be assembled into a new system, it will yield a modular solution
that does not reinvent the wheel.
Modular understandability. If a module can be understood as a standalone
unit (without reference to other modules), it will be easier to build and easier to
change.
Modular continuity. If small changes to the system requirements result in
changes to individual modules, rather than system wide changes, the impact of
change-induced side effects will be minimized.
Modular protection. If an aberrant condition occurs within a module and its
effects are constrained within that module, the impact of error-induced side
effects will be minimized.

4) Software Architecture
Software architecture alludes to “the overall structure of the software and the
ways in which that structure provides conceptual integrity for a system”. 

In its simplest form, architecture is the hierarchical structure of program
components (modules), the manner in which these components interact and
the structure of data that are used by the components. In a broader sense,
however, components can be generalized to represent major system elements
and their interactions.

One goal of software design is to derive an architectural rendering of a system.
This rendering serves as a framework from which more detailed design
activities are conducted. A set of architectural patterns enable a software
engineer to reuse design level concepts.

Structural properties. This aspect of the architectural design representation
defines the components of a system (e.g., modules, objects, filters) and the
manner in which those components are packaged and interact with one
another. For example, objects are packaged to encapsulate both data and the
processing that manipulates the data and interact via the invocation of
methods.

Extra-functional properties. The architectural design description should
address how the design architecture achieves requirements for performance,
capacity, reliability, security, adaptability, and other system characteristics.



Families of related systems. The architectural design should draw upon
repeatable patterns that are commonly encountered in the design of families of
similar systems. In essence, the design should have the ability to reuse
architectural building blocks.

Given the specification of these properties, the architectural design can be
represented using one or more of a number of different models. Structural
models represent architecture as an organized collection of program
components.

Framework models increase the level of design abstraction by attempting to
identify repeatable architectural design frameworks (patterns) that are
encountered in similar types of applications. 

Dynamic models address the behavioral aspects of the program architecture,
indicating how the structure or system configuration may change as a function
of external events. 

Process models focus on the design of the business or technical process that
the system must accommodate. 

Finally, functional models can be used to represent the functional hierarchy of a
system.

5) Control Hierarchy
Control hierarchy, also called program structure, represents the organization
of program components (modules) and implies a hierarchy of control. It does
not represent procedural aspects of software such as sequence of processes,
occurrence or order of decisions, or repetition of operations; nor is it
necessarily applicable to all architectural styles.

Different notations are used to represent control hierarchy for those
architectural styles that are amenable to this representation. The most
common is the treelike diagram (See Figure) that represents hierarchical
control for call and return architectures.

Referring to Figure, depth and width provide an indication of the number of
levels of control and overall span of control, respectively. 



Fan-out is a measure of the number of modules that are directly controlled by
another module. 
Fan-in indicates how many modules directly control a given module.

The control relationship among modules is expressed in the following way: A
module that controls another module is said to be superordinate to it, and
conversely, a module controlled by another is said to be subordinate to the
controller.  For example, referring to Figure below, module M is superordinate
to modules a, b, and c. Module h is subordinate to module e and is ultimately
subordinate to module M.

Width-oriented relationships (e.g., between modules d and e) although possible
to express in practice, need not be defined with explicit terminology.

The control hierarchy also represents two subtly different characteristics of the
software architecture: visibility and connectivity. Visibility indicates the set of
program components that may be invoked or used as data by a given
component, even when this is accomplished indirectly. All of the objects are
visible to the module.

Connectivity indicates the set of components that are directly invoked or used
as data by a given component. For example, a module that directly causes
another module to begin execution is connected to it.



Figure. Control Hierarchy

6) Structural Partitioning
If the architectural style of a system is hierarchical, the program structure can
be partitioned both horizontally and vertically. Referring to following Figure, 

Horizontal partitioning defines separate branches of the modular hierarchy
for each major program function. 

Control modules, represented in a darker shade are used to coordinate
communication between and execution of the functions. The simplest approach
to horizontal partitioning defines three partitions—input, data transformation
(often called processing) and output. Partitioning the architecture horizontally
provides a number of distinct benefits:
• software that is easier to test
• software that is easier to maintain
• propagation of fewer side effects
• software that is easier to extend

Because major functions are decoupled from one another, change tends to be
less complex and extensions to the system (a common occurrence) tend to be
easier to accomplish without side effects. On the negative side, horizontal
partitioning often causes more data to be passed across module interfaces and
can complicate the overall control of program flow (if processing requires rapid
movement from one function to another).

Vertical partitioning (See below Figure), often called factoring, suggests that
control (decision making) and work should be distributed top-down in the
program structure. 

Top level modules should perform control functions and do little actual
processing work. Modules that reside low in the structure should be the
workers, performing all input, computation, and output tasks.

The nature of change in program structures justifies the need for vertical
partitioning. Referring to Figure, it can be seen that a change in a control
module (high in the structure) will have a higher probability of propagating side
effects to modules that are subordinate to it. A change to a worker module,
given its low level in the structure, is less likely to cause the propagation of side
effects. In general, changes to computer programs revolve around changes to
input, computation or transformation, and output. The overall control
structure of the program (i.e., its basic behavior is far less likely to change). For
this reason vertically partitioned structures are less likely to be susceptible to



side effects when changes are made and will therefore be more maintainable—a
key quality factor.

7) Data Structure
Data structure is a representation of the logical relationship among individual
elements of data. Because the structure of information will invariably affect the
final procedural design, data structure is as important as program structure to
the representation of software architecture.

The organization and complexity of a data structure are limited only by the
ingenuity of the designer. There are, however, a limited number of classic data
structures that form the building blocks for more sophisticated structures.

A scalar item is the simplest of all data structures. As its name implies, a scalar
item represents a single element of information that may be addressed by an
identifier; that is, access may be achieved by specifying a single address in
memory. The size and format of a scalar item may vary within bounds that are
dictated by a programming language. For example, a scalar item may be a
logical entity one bit long, an integer or floating point number that is 8 to 64
bits long, or a character string that is hundreds or thousands of bytes long.



When scalar items are organized as a list or contiguous group, a sequential
vector is formed. Vectors are the most common of all data structures and open
the door to variable indexing of information.

When the sequential vector is extended to two, three, and ultimately, an
arbitrary number of dimensions, an n-dimensional space is created. The most
common n-dimensional space is the two-dimensional matrix. In many
programming languages, an n dimensional space is called an array.

Items, vectors, and spaces may be organized in a variety of formats. A linked
list is a data structure that organizes noncontiguous scalar items, vectors, or
spaces in a manner (called nodes) that enables them to be processed as a list.
Each node contains the appropriate data organization (e.g., a vector) and one
or more pointers that indicate the address in storage of the next node in the
list. Nodes may be added at any point in the list by redefining pointers to
accommodate the new list entry.

Other data structures incorporate or are constructed using the fundamental
data structures just described. For example, a hierarchical data structure is
implemented using multilinked lists that contain scalar items, vectors, and
possibly, n-dimensional spaces. A hierarchical structure is commonly
encountered in applications that require information categorization and
associativity.

It is important to note that data structures, like program structure, can be
represented at different levels of abstraction. For example, a stack is a
conceptual model of a data structure that can be implemented as a vector or a
linked list.
Depending on the level of design detail, the internal workings of a stack may or
may not be specified.

8) Software Procedure
Program structure defines control hierarchy without regard to the sequence of
processing and decisions. Software procedure focuses on the processing details
of each module individually. Procedure must provide a precise specification of
processing, including sequence of events, exact decision points, repetitive
operations, and even data organization and structure.

There is, of course, a relationship between structure and procedure. The
processing indicated for each module must include a reference to all modules
subordinate to the module being described. That is, a procedural
representation of software is layered as illustrated in the below Figure



Figure. Procedure is Layered

9) Information Hiding
The concept of modularity leads every software designer to a fundamental
question: "How do we decompose a software solution to obtain the best set of
modules?"

The principle of information hiding  suggests that modules be "characterized by
design decisions that (each) hides from all others." In other words, modules
should be specified and designed so that information (procedure and data)
contained within a module is inaccessible to other modules that have no need
for such information.

Hiding implies that effective modularity can be achieved by defining a set of
independent modules that communicate with one another only that
information necessary to achieve software function. Abstraction helps to define
the procedural (or informational) entities that make up the software. Hiding



defines and enforces access constraints to both procedural detail within a
module and any local data structure used by the module.

The use of information hiding as a design criterion for modular systems
provides the greatest benefits when modifications are required during testing
and later, during software maintenance. Because most data and procedure are
hidden from other parts of the software, inadvertent errors introduced during
modification are less likely to propagate to other locations within the software.

EFFECTIVE MODULAR DESIGN

Functional Independence

The concept of functional independence is a direct outgrowth of modularity and
the concepts of abstraction and information hiding. 

Functional independence is achieved by developing modules with
"single-minded" function and an "aversion" to excessive interaction with other
modules. functional independence is a key to good design, and design is the
key to software quality.

Independence is measured using two qualitative criteria: cohesion and
coupling.

Cohesion is a measure of the relative functional strength of a module. 

Coupling is a measure of the relative interdependence among modules.

Cohesion
Cohesion is a natural extension of the information hiding concept. A cohesive
module performs a single task within a software procedure, requiring little
interaction with procedures being performed in other parts of a program.
Stated simply, a cohesive module should (ideally) do just one thing.

At the low (undesirable) end of the spectrum, we encounter a module that
performs a set of tasks that relate to each other loosely, if at all. Such modules
are termed coincidentally cohesive.

A module that performs tasks that are related logically (e.g., a module that
produces all output regardless of type) is logically cohesive.



When a module contains tasks that are related by the fact that all must be
executed with the same span of time, the module exhibits temporal cohesion.

As an example of low cohesion, consider a module that performs error
processing for an engineering analysis package. The module is called when
computed data exceed pre-specified bounds. It performs the following tasks: (1)
computes supplementary data based on original computed data, (2) produces
an error report (with graphical content) on the user's workstation, (3) performs
follow-up calculations requested by the user, (4) updates a database, and (5)
enables menu selection for subsequent processing. Although the preceding
tasks are loosely related, each is an independent functional entity that might
best be performed as a separate module. Combining the functions into a single
module can serve only to increase the likelihood of error propagation when a
modification is made to one of its processing tasks.

Moderate levels of cohesion are relatively close to one another in the degree of
module independence. When processing elements of a module are related and
must be executed in a specific order, procedural cohesion exists. 

When all processing elements concentrate on one area of a data structure,
communicational cohesion is present.

High cohesion is characterized by a module that performs one distinct
procedural task.
As we have already noted, it is unnecessary to determine the precise level of
cohesion.

Rather it is important to strive for high cohesion and recognize low cohesion
so that software design can be modified to achieve greater functional
independence.

Coupling
Coupling is a measure of interconnection among modules in a software
structure.

Coupling depends on the interface complexity between modules, the point at
which entry or reference is made to a module, and what data pass across the
interface.

In software design, we strive for lowest possible coupling.



Figure below provides examples of different types of module coupling. 

Modules a and d are subordinate to different modules. Each is unrelated and
therefore no direct coupling occurs. 

Module c is subordinate to module a and is accessed via a conventional
argument list, through which data are passed. As long as a simple argument
list is present (i.e., simple data are passed; a one-to-one correspondence of
items exists), low coupling (called data coupling) is exhibited in this portion of
structure. 

A variation of data coupling, called stamp coupling, is found when a portion of
a data structure (rather than simple arguments) is passed via a module
interface. This occurs between modules b and a.

At moderate levels, coupling is characterized by passage of control between
modules. Control coupling is very common in most software designs and is
shown in Figure below where a “control flag” (a variable that controls decisions
in a subordinate or superordinate module) is passed between modules d and e.

Relatively high levels of coupling occur when modules are tied to an
environment external to software. For example, I/O couples a module to
specific devices, formats, and communication protocols. 

External coupling is essential, but should be limited to a small number of
modules with a structure. High coupling also occurs when a number of
modules reference a global data area. 

Common coupling, as this mode is called, is shown in Figure below. Modules
c, g, and k each access a data item in a global data area (e.g., a disk file or a
globally accessible memory area). Module c initializes the item. Later module g
re-computes and updates the item. Let's assume that an error occurs and g
updates the item incorrectly. Much later in processing module, k reads the
item, attempts to process it, and fails, causing the software to abort. The
apparent cause of abort is module k; the actual cause, module g. Diagnosing
problems in structures with considerable common coupling is time consuming
and difficult. However, this does not mean that the use of global data is
necessarily "bad." It does mean that a software designer must be aware of
potential consequences of common coupling and take special care to guard
against them.



The highest degree of coupling, content coupling, occurs when one module
makes use of data or control information maintained within the boundary of
another module.

Secondarily, content coupling occurs when branches are made into the middle
of a module. This mode of coupling can and should be avoided.

The coupling modes just discussed occur because of design decisions made
when structure was developed. Variants of external coupling, however, may be
introduced during coding. For example, compiler coupling ties source code to
specific (and often nonstandard) attributes of a compiler; operating system (OS)
coupling ties design and resultant code to operating system "hooks" that can
create havoc when OS changes occur.

Figure. Types of  Coupling

DATA DESIGN

It creates a model of data and/or information that is represented at a high level
of abstraction (the customer/user’s view of data).



The structure of data has always been an important part of software design.
The translation of a data model (derived as part of requirements engineering)
into a database is pivotal to achieving the business objectives of a system.

Data Modeling, Data Structures, Databases, and the Data warehouse 

The data design activity translates these elements of the requirements model
into data structures at the software component level and, when necessary, a
database architecture at the application level. The challenge for a business has
been to extract useful information from this data environment, particularly
when the information desired is cross-functional (e.g., information that can be
obtained only if specific marketing data are cross-correlated with product
engineering data).

To solve this challenge, the business IT community has developed data mining
techniques, also called knowledge discovery in databases (KDD), that navigate
through existing databases in an attempt to extract appropriate business-level
information. However, the existence of multiple databases, their different
structures, the degree of detail contained with the databases, and many other
factors make data mining difficult within an existing database environment. An
alternative solution, called a data warehouse, adds an additional layer to the
data architecture.

A data warehouse is a separate data environment that is not directly integrated
with day-to-day applications but encompasses all data used by a business. In a
sense, a data warehouse is a large, independent database that encompasses
some, but not all, of the data that are stored in databases that serve the set of
applications required by a business. But many characteristics differentiate a
data ware-house from the typical database.

Data Design at the Component Level

Data design at the component level focuses on the representation of data
structures that are directly accessed by one or more software components.

The systematic analysis principles applied to function and behavior should also
be applied to data.
All data structures and the operations to be performed on each should be
identified.
A data dictionary should be established and used to define both data and
pro-gram design.
Low-level data design decisions should be deferred until late in the design
process.



The representation of data structure should be known only to those modules that
must make direct use of the data contained within the structure.
A library of useful data structures and the operations that may be applied to them
should be developed.
A software design and programming language should support the specification
and realization of abstract data types.

ARCHITECTURAL DESIGN

What is it? Architectural design represents the structure of data and program
components that are required to build a computer-based system. It considers
the architectural style that the system will take, the structure and properties of
the components that constitute the system, and the inter-relationships that
occur among all architectural components of a system.

Who does it? Although a software engineer can design both data and
architecture, the job is often allocated to specialists when large, complex
systems are to be built. A database or data ware-house designer creates the
data architecture for a system. The “system architect” selects an appropriate
architectural style for the requirements derived during system engineering
and software requirements analysis.

      Why is it important? In the Quick Look for the last chapter, we asked:
“You wouldn’t attempt to build a house without a blueprint, would you?” You
also wouldn’t begin drawing blueprints by sketching the plumbing layout for
the house. You’d need to look at the big picture—the house itself—before you
worry about details. That’s what architectural design does—it provides you
with the big picture and ensures that you’ve got it right.

What are the steps? Architectural design begins with data design and then
proceeds to the derivation of one or more representations of the system.
Alternative architectural styles or patterns analyzed to derive the structure that
is best suited to the customer requirements and quality attributes. Once
alternative has been selected the architecture is elaborated using an
architectural design method.

What is the work-product? Architectural design composed of Data Architecture
and Program Structure. In addition component properties and relationships.

what is software architecture? The architecture is not the operational software.
Rather, it is a representation that enables a software engineer to (1) analyze the
effectiveness of the design in meeting its stated requirements, (2) consider
architectural alternatives at a stage when making design changes is still



relatively easy, and (3) reducing the risks associated with the construction of
the software.

Why software architecture is important? Representations of software  
architecture are an enabler for communication between all parties 
(stakeholders) interested in the development of a computer based system.

Architecture “constitutes a relatively small, intellectually graspable model of
how the system is structured and how its components work together”.

ARCHITECTURAL STYLES
The software that is built for computer-based systems also exhibits one of
many architectural styles. Each style describes a system category that
encompasses (1) a set of components (e.g., a database, computational modules)
that perform a function required by a system; (2) a set of connectors that enable
“communication, co-ordinations and cooperation” among components; (3)
constraints that define how components can be integrated to form the system;
and (4) semantic models that enable a designer to understand the overall
properties of a system by analyzing the known properties of its constituent
parts.

COMMONLY USED ARCHITECTURAL STYLES AND PATTERNS
Data-centered architectures. A data store (e.g., a file or database) resides at
the center of this architecture and is accessed frequently by other components
that update, add, delete, or otherwise modify data within the store. Below
Figure illustrates a typical data-centered style. Promotes integrability. Client
components independently execute process.



Figure. Data Centered Architecture

Data-flow architectures. This architecture is applied when input data are to
be transformed through a series of computational or manipulative components
into output data. A pipe and filter pattern (Refer following Figure) has a set of
components, called filters, connected by pipes that transmit data from one
component to the next. Each filter works independently of those components
upstream and downstream, is designed to expect data input of a certain form,
and produces data output (to the next filter) of a specified form. However, the
filter does not require knowledge of the working of its neighboring filters.



If the data flow degenerates into a single line of transforms, it is termed
batch sequential. This pattern (Refer Figure) accepts a batch of data and then
applies a series of sequential components (filters) to transform it.

Call and return architectures. This architectural style enables a software
designer (system architect) to achieve a program structure that is relatively
easy to modify and scale. 

A number of sub styles exist within this category:
Main program/subprogram architectures. This classic program structure
decomposes function into a control hierarchy where a “main” program invokes
a number of program components, which in turn may invoke still other
components. (Refer previous Figure of Control Hierarchy)

Remote procedure call architectures. The components of a main program/
subprogram architecture are distributed across multiple computers on a
net-work

Object-oriented architectures. The components of a system encapsulate data
and the operations that must be applied to manipulate the data.
Communication and coordination between components is accomplished via
message passing.

Layered architectures. The basic structure of a layered architecture is
illus-trated in the following Figure. A number of different layers are defined,
each accomplishing operations that progressively become closer to the
machine instruction set. At the outer layer, components service user interface



operations. At the inner layer, components perform operating system
interfacing. Intermediate layers provide utility services and application
software functions.

These architectural styles are only a small subset of those available to the
software designer. Once requirements engineering uncovers the characteristics
and constraints of the system to be built, the architectural pattern (style) or
combination of patterns (styles) that best fits those characteristics and
constraints can be chosen. In many cases, more than one pattern might be
appropriate and alternative architectural styles might be designed and
evaluated.

Figure. Layered Architecture

MAPPING REQUIREMENTS INTO A SOFTWARE ARCHITECTURE

The software requirements can be mapped into various representations of the
design model. The transition from the requirements model to a variety of
architectural styles. To illustrate one approach to architectural mapping, we
consider the call and return architecture—an extremely common structure for
many types of systems.

Structured design is often characterized as a data flow-oriented design
method because it provides a convenient transition from a data flow diagram to
software architecture.7 The transition from information flow (represented as a
DFD) to pro-gram structure is accomplished as part of a six-step process: (1)
the type of information flow is established; (2) flow boundaries are indicated; (3)



the DFD is mapped into program structure; (4) control hierarchy is defined; (5)
resultant structure is refined using design measures and heuristics; and (6) the
architectural description is refined and elaborated.
The type of information flow is the driver for the mapping approach required in
step 3. In the following sections we examine two flow types.

Transform Flow

Recalling the fundamental system model (level 0 data flow diagram),
information must enter and exit software in an "external world" form. For
example, data typed on a keyboard, tones on a telephone line, and video
images in a multimedia application are all forms of external world information.
Such externalized data must be converted into an internal form for processing.
Information enters the system along paths that transform external data into an
internal form. These paths are identified as incoming flow. At the kernel of the
software, a transition occurs. Incoming data are passed through a transform
center and begin to move along paths that now lead "out" of the software. Data
moving along these paths are called outgoing flow. The overall flow of data
occurs in a sequential manner and follows one, or only a few, "straight line"
paths. When a segment of a data flow diagram exhibits these characteristics,
transform flow is present.

Figure. Transform Flow

Incoming Flow -> Transform Center -> Outgoing Flow

Transaction Flow

The fundamental system model implies transform flow; therefore, it is possible
to characterize all data flow in this category. However, information flow is often
characterized by a single data item, called a transaction, that triggers other
data flow along one of many paths. When a DFD takes the form shown in below
figure, transaction flow is present.

Transaction flow is characterized by data moving along an incoming path that
converts external world information into a transaction. The transaction is



evaluated and, based on its value, flow along one of many action paths is
initiated. The hub of information flow from which many action paths emanate
is called a transaction center.

It should be noted that, within a DFD for a large system, both transform and
trans-action flow may be present. For example, in a transaction-oriented flow,
information flow along an action path may have transform flow characteristics.

Figure. Transaction Flow
Incoming flow -> Transaction Centre -> Action Paths

TRANSFORM MAPPING
Transform mapping is a set of design steps that allows a DFD with transform
flow characteristics to be mapped into a specific architectural style. In this
section trans-form mapping is described by applying design steps to an
example system.

After identifying Transform Flow, identify the boundaries of incoming and
outgoing flow. In between the boundaries the central transform is located.





Figure. Mapping the Transform Flow to Call and Return Architecture



Figure. Transform Mapping

TRANSACTION MAPPING

In many software applications, a single data item triggers one or a number of
information flows that effect a function implied by the triggering data item. The
data item, called a transaction, and its corresponding flow characteristics are
discussed earlier. In this section we consider design steps used to treat
transaction flow.

After identifying the Transaction Flow, identify the Transaction Centre and flow
characteristics of each action path. Similar to transform flow , boundaries are
identified for incoming flow and the separate action paths. Each action path is
a transform flow or transaction flow.

Design Steps:

Step 1. Review the fundamental system model.



Step 2. Review and refine data flow diagrams for the software.

Step 3. Determine whether the DFD has transform or transaction flow
characteristics.

Step 4. Isolate the transform center by specifying incoming and outgoing
flow boundaries.
(Identify the Transaction Center and flow characteristics along each action
path)

Step 5. Perform "first-level factoring." 
(Program structure represents a top-down distribution of control. Factoring
results in a program structure in which top-level modules perform decision
making and low-level modules perform most input, computation, and output
work. Middle-level modules perform some control and do moderate amounts of
work.)

Step 6. Perform "second-level factoring."
(Mapping individual transforms (bubbles) of a DFD into appropriate modules
within the architecture)

Step 7. Refine the first-iteration architecture using design heuristics for
improved software quality.
(A first-iteration architecture can always be refined by applying concepts of
module independence(good cohesion, minimal coupling))





Figure. Mapping the Transaction Flow to Call and Return Architecture



Figure. Transaction Mapping

USER INTERFACE DESIGN

Interface design focuses on three areas of concern: 
(1) the design of interfaces between software components, 
(2) the design of interfaces between the software and other nonhuman
producers and consumers of information (i.e., other external entities), and 
(3) the design of the interface between a human (i.e., the user) and the
computer.

What is it? User interface design creates an effective communication medium
between a human and a computer. 
Following a set of interface design principles, design identifies interface objects



and actions and then creates a screen layout that forms the basis for a user
interface prototype.

Who does it? A software engineer designs the user interface by applying an
iterative process that draws on predefined design principles.

Why is it important? If software is difficult to use, if it forces you into mistakes,
or if it frustrates your efforts to accomplish your goals, you won’t like it,
regardless of the computational power it exhibits or the functionality it offers.
Because it molds a user’s perception of the software, the interface has
to be right.

What are the steps? User interface design begins with the identification of user,
task, and environmental requirements. Once user tasks have been identified,
user scenarios are created and analyzed to define a set of interface objects and
actions. These form the basis for the creation of screen layout that depicts
graphical design and placement of icons, definition of descriptive screen
text, specification and titling for windows, and specification of major and minor
menu items. Tools are used to prototype and ultimately implement the design
model, and the result is evaluated for quality.

What is the work product? User scenarios are created and screen layouts are
generated. An interface prototype is developed and modified in an iterative
fashion.

These golden rules actually form the basis for a set of user interface design
principles that guide this important software design activity.

1. Place the user in control.
2. Reduce the user’s memory load.
3. Make the interface consistent.

 Place the User in Control 
design principles that allow the user to maintain control:
Define interaction modes in a way that does not force a user into
unnecessary or undesired actions. An interaction mode is the current state of
the interface. For example, if spell check is selected in a word-processor menu,
the software moves to a spell checking mode. There is no reason to force the
user to remain in spell checking mode if the user desires to make a small text
edit along the way. The user should be able to enter and exit the mode with
little or no effort.
Provide for flexible interaction. Because different users have different
interaction preferences, choices should be provided. For example, software



might allow a user to interact via keyboard commands, mouse movement, a
digitizer pen, or voice recognition commands. But every action is not amenable
to every interaction mechanism.
Consider, for example, the difficulty of using keyboard command (or voice
input) to draw a complex shape.
Allow user interaction to be interruptible and undoable. Even when
involved in a sequence of actions, the user should be able to interrupt the
sequence to do something else (without losing the work that had been done).
The user should also be able to “undo” any action.
Streamline interaction as skill levels advance and allow the interaction to
be customized. Users often find that they perform the same sequence of
interactions repeatedly. It is worthwhile to design a “macro” mechanism that
enables an advanced user to customize the interface to facilitate interaction.
Hide technical internals from the casual user. The user interface should
move the user into the virtual world of the application. The user should not be
aware of the operating system, file management functions, or other arcane
computing technology.
In essence, the interface should never require that the user interact at a level
that is “inside” the machine (e.g., a user should never be required to type
operating system commands from within application software).
Design for direct interaction with objects that appear on the screen. The
user feels a sense of control when able to manipulate the objects that are
necessary to perform a task in a manner similar to what would occur if the
object were a physical thing. For example, an application interface that allows a
user to “stretch” an object (scale it in size) is an implementation of direct
manipulation.

 Reduce the User’s Memory Load
The more a user has to remember, the more error-prone will be the interaction
with the system.

design principles that enable an interface to reduce the user’s memory load:
Reduce demand on short-term memory. When users are involved in complex
tasks, the demand on short-term memory can be significant. The interface
should be designed to reduce the requirement to remember past actions and
results. This can be accomplished by providing visual cues that enable a user
to recognize past actions, rather than having to recall them.
Establish meaningful defaults. The initial set of defaults should make sense
for the average user, but a user should be able to specify individual
preferences.
However, a “reset” option should be available, enabling the redefinition of
original default values.
Define shortcuts that are intuitive. When mnemonics are used to
accomplish a system function (e.g., alt-P to invoke the print function), the



mnemonic should be tied to the action in a way that is easy to remember (e.g.,
first letter of the task to be invoked).
The visual layout of the interface should be based on a real world
metaphor. For example, a bill payment system should use a check book and
check register metaphor to guide the user through the bill paying process. This
enables the user to rely on well-understood visual cues, rather than
memorizing an arcane interaction sequence.
Disclose information in a progressive fashion. The interface should be
organized hierarchically. That is, information about a task, an object, or some
behavior should be presented first at a high level of abstraction. More detail
should be presented after the user indicates interest with a mouse pick. An
example, common to many word-processing applications, is the underlining
function. The function itself is one of a number of of functions under a text
style menu. However, every underlining capability is not listed. The user must
pick underlining, then all underlining options (e.g., single underline, double
underline, dashed underline) are presented.

 Make the Interface Consistent
The interface should present and acquire information in a consistent fashion.
This implies that (1) all visual information is organized according to a design
standard that is maintained throughout all screen displays, (2) input
mechanisms are constrained to a limited set that are used consistently
throughout the application, and (3) mechanisms for navigating from task to
task are consistently defined and implemented. 

Design principles that help make the interface consistent:
Allow the user to put the current task into a meaningful context. Many
interfaces implement complex layers of interactions with dozens of screen
images.
It is important to provide indicators (e.g., window titles, graphical icons,
consistent color coding) that enable the user to know the context of the work at
hand.
In addition, the user should be able to determine where he has come from and
what alternatives exist for a transition to a new task.

Maintain consistency across a family of applications. A set of applications
(or products) should all implement the same design rules so that consistency is
maintained for all interaction.

If past interactive models have created user expectations, do not make



changes unless there is a compelling reason to do so. Once a particular
interactive sequence has become a de facto standard (e.g., the use of alt-S to
save a file), the user expects this in every application he encounters. A change
(e.g., using alt-S to invoke scaling) will cause confusion.

USER INTERFACE DESIGN
The software engineer creates a design model, establishes a user model, the
end-user develops a user's model or the system perception, and the
implementers of the system create a system image

USERS
users can be categorized as:
• Novices. No syntactic knowledge of the system and little semantic
knowledge of the application or computer usage in general.
• Knowledgeable, intermittent users. Reasonable semantic knowledge of
the application but relatively low recall of syntactic information necessary to
use the interface.
• Knowledgeable, frequent users. Good semantic and syntactic knowledge
that often leads to the "power-user syndrome"; that is, individuals who look
for shortcuts and abbreviated modes of interaction.

The information gathered as part of the analysis activity is used to create an
analysis model for the interface. Using this model as a basis, the design activity
commences.

The goal of interface design is to define a set of interface objects and actions
(and their screen representations) that enable a user to perform all defined
tasks in a manner that meets every usability goal defined for the system. 

The implementation activity normally begins with the creation of a prototype
that enables usage scenarios to be evaluated. As the iterative design process
continues, a user interface tool kit may be used to complete the construction of
the interface.



Figure. The Users Interface Design Process

the user interface design process encompasses four distinct framework
activities:
1. User, task, and environment analysis and modeling
2. Interface design
3. Interface construction
4. Interface validation

The spiral shown in Figure implies that each of these tasks will occur more
than once, with each pass around the spiral representing additional
elaboration of requirements and the resultant design. 

In most cases, the implementation activity involves prototyping—the only
practical way to validate what has been designed.

The initial analysis activity focuses on the profile of the users who will interact
with the system. Skill level, business understanding, and general receptiveness
to the new system are recorded; and different user categories are defined. For
each user category, requirements are elicited. 

In essence, the software engineer attempts to understand the system
perception for each class of users.

Once general requirements have been defined, a more detailed task analysis is
conducted. Those tasks that the user performs to accomplish the goals of the
system are identified, described, and elaborated (over a number of iterative
passes through the spiral). 

Validation focuses on (1) the ability of the interface to implement every user
task correctly, to accommodate all task variations, and to achieve all general
user requirements;



(2) the degree to which the interface is easy to use and easy to learn; and 
(3) the users’ acceptance of the interface as a useful tool in their work.

COMPONENT LEVEL DESIGN

What is it? Data, architectural, and interface design must be translated into
operational software. To accomplish this, the design must be represented at a
level of abstraction that is close to code. Component-level design establishes
the algorithmic detail required to manipulate data structures, effect
communication between software components via their interfaces, and
implement the processing algorithms allocated to each component.

Who does it? A software engineer performs component-level design.

Why is it important? You have to be able to determine whether the program will
work before you build it. The component-level design represents the software in
a way that allows you to review the details of the design for correctness and
consistency with earlier design representations (i.e., the data, architectural,
and interface designs). It provides a means for assessing whether data
structures, interfaces, and algorithms will work.

What are the steps? Design representations of data, architecture, and
interfaces form the foundation for component-level design. The processing
narrative for each component is translated into a procedural design model
using a set of structured programming constructs. Graphical, tabular, or
text-based notation is used to represent the design.

What is the work product? The procedural design for each component,
represented in graphical, tabular, or text-based notation, is the primary work
product produced during component-level design.

The design process encompasses a sequence of activities that slowly reduces
the level of abstraction with which software is represented. Component-level
design depicts the software at a level of abstraction that is very close to code.

At the component level, the software engineer must represent data structures,
interfaces, and algorithms in sufficient detail to guide in the generation of
programming language source code. To accomplish this, the designer uses one
of a number of design notations that represent component-level detail in either
graphical, tabular, or text-based formats.

It is possible to represent the component-level design using a programming
language. In essence, the program is created using the design model as a
guide. An alter-native approach is to represent the procedural design using
some intermediate (e.g., graphical, tabular, or text-based) representation that



can be translated easily into source code. Regardless of the mechanism that is
used to represent the component-level design, the data structures, interfaces,
and algorithms defined should conform to a variety of well-established
procedural design guidelines that help us to avoid errors as the procedural
design evolves.

The foundations of component-level design were formed in the early 1960s. In
the late 1960s, Dijkstra and others proposed the use of a set of constrained
logical constructs from which any program could be formed. The constructs
emphasized "maintenance of functional domain." That is, each construct had a
predictable logical structure, was entered at the top and exited at the bottom,
enabling a reader to follow procedural flow more easily.

The constructs are sequence, condition, and repetition. Sequence implements
processing steps that are essential in the specification of any algorithm.
Condition pro-vides the facility for selected processing based on some logical
occurrence, and repetition allows for looping. These three constructs are
fundamental to structured programming—an important component-level design
technique.

The structured constructs were proposed to limit the procedural design of
soft-ware to a small number of predictable operations. Complexity metrics
indicate that the use of the structured constructs reduces program complexity
and thereby enhances readability, testability, and maintainability. The use of a
limited number of logical constructs also contributes to a human
understanding process that psychologists call chunking. To understand this
process, consider the way in which you are reading this page. You do not read
individual letters but rather recognize pat-terns or chunks of letters that form
words or phrases. The structured constructs are logical chunks that allow a
reader to recognize procedural elements of a module, rather than reading the
design or code line by line. Understanding is enhanced when readily
recognizable logical patterns are encountered.

Any program, regardless of application area or technical complexity, can be
designed and implemented using only the three structured constructs. It
should be noted, however, that dogmatic use of only these constructs can
sometimes cause practical difficulties. 



Figure. Flow Chart Constructs

Graphical Design Notation

"A picture is worth a thousand words," but it's rather important to know which
picture and which 1000 words. There is no question that graphical tools, such
as the flowchart or box diagram, provide useful pictorial patterns that readily
depict procedural detail. However, if graphical tools are misused, the wrong
picture may lead to the wrong software.

A flowchart is quite simple pictorially. A box is used to indicate a processing
step. A diamond represents a logical condition, and arrows show the flow of
control. Figure above illustrates three structured constructs. The sequence is
represented as two processing boxes connected by an line (arrow) of control.
Condition, also called if-then-else, is depicted as a decision diamond that if true,



causes then-part processing to occur, and if false, invokes else-part processing.
Repetition is represented using two slightly different forms. The do while tests a
condition and executes a loop task repetitively as long as the condition holds
true. A repeat until executes the loop task first, then tests a condition and
repeats the task until the condition fails. The selection (or select-case)
construct shown in the figure is actually an extension of the if-then-else.        
A parameter is tested by successive decisions until a true condition occurs and
a case part processing path is executed.

The structured constructs may be nested within one another as shown in
Figure. Referring to the figure, repeat-until forms the then part of if-then-else
(shown enclosed by the outer dashed boundary). Another if-then-else forms the
else part of the larger condition. Finally, the condition itself becomes a second
block in a sequence. By nesting constructs in this manner, a complex logical
schema may be developed. It should be noted that any one of the blocks in
Figure could reference another module, thereby accomplishing procedural
layering implied by program structure.

Figure. Box Diagram Constructs



 Tabular Design Notation

In many software applications, a module may be required to evaluate a
complex combination of conditions and select appropriate actions based on
these conditions. Decision tables provide a notation that translates actions and
conditions (described in a processing narrative) into a tabular form. The table
is difficult to misinterpret and may even be used as a machine readable input
to a table driven algorithm. In a comprehensive treatment of this design tool.

Some old software tools and techniques mesh well with new tools and
techniques of soft-ware engineering. Decision tables are an excellent example.
Decision tables preceded soft-ware engineering by nearly a decade, but fit so
well with software engineering that they might have been designed for that
purpose.

Decision table organization is illustrated in Figure above Referring to the figure,
the table is divided into four sections. The upper left-hand quadrant contains a
list of all conditions. The lower left-hand quadrant contains a list of all actions
that are possible based on combinations of conditions. The right-hand
quadrants form a matrix that indicates condition combinations and the
corresponding actions that will occur for a specific combination. Therefore,
each column of the matrix may be interpreted as a processing rule.

The following steps are applied to develop a decision table:

List all actions that can be associated with a specific procedure (or
module).
List all conditions (or decisions made) during execution of the procedure.

Associate specific sets of conditions with specific actions, eliminating
impossible combinations of conditions; alternatively, develop every possible
per-mutation of conditions.

Define rules by indicating what action(s) occurs for a set of conditions.

To illustrate the use of a decision table, consider the following excerpt from a
processing narrative for a public utility billing system:

If the customer account is billed using a fixed rate method, a minimum
monthly charge is assessed for consumption of less than 100 KWH



(kilowatt-hours). Otherwise, computer billing applies a Schedule A rate
structure. However, if the account is billed using a variable rate method, a
Schedule A rate structure will apply to consumption below 100 KWH, with
additional consumption billed according to Schedule B.

Figure below illustrates a decision table representation of the preceding
narrative. Each of the five rules indicates one of five viable conditions (i.e., a T
(true) in both fixed rate and variable rate account makes no sense in the
context of this procedure; therefore, this condition is omitted). As a general
rule, the decision table can be effectively used to supplement other procedural
design notation.

Figure. Tabular Design Notation

Program Design Language

Program design language (PDL), also called structured English or pseudo-code, is
"a pidgin language in that it uses the vocabulary of one language (i.e., English)
and the overall syntax of another (i.e., a structured programming language)".

At first glance PDL looks like a modern programming language. The difference
between PDL and a real programming language lies in the use of narrative text
(e.g., English) embedded directly within PDL statements. Given the use of
narrative text embedded directly into a syntactical structure, PDL cannot be
compiled (at least not yet). However, PDL tools currently exist to translate PDL



into a programming language “skeleton” and/or a graphical representation
(e.g., a flowchart) of design. These tools also produce nesting maps, a design
operation index, cross-reference tables, and a variety of other information.

A program design language may be a simple transposition of a language such
as Ada or C. Alternatively, it may be a product purchased specifically for
procedural design. Regardless of origin, a design language should have the
following characteristics:

A fixed syntax of keywords that provide for all structured constructs,
data declaration, and modularity characteristics.

A free syntax of natural language that describes processing features.

Data declaration facilities that should include both simple (scalar, array)
and complex (linked list or tree) data structures.

Subprogram definition and calling techniques that support various modes
of interface description.

A basic PDL syntax should include constructs for subprogram definition,
interface description, data declaration, techniques for block structuring,
condition constructs, repetition constructs, and I/O constructs. The format
and semantics for some of these PDL constructs are presented in the section
that follows.

It should be noted that PDL can be extended to include keywords for
multitasking and/or concurrent processing, interrupt handling, inter process
synchronization, and many other features. The application design for which
PDL is to be used should dictate the final form for the design language.



Figure. The Resultant Decision Table

A PDL Example
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SOFTWARE TESTING 

Testing Objectives

Testing is a process of executing a program with the intent of finding an
error. 

A good test case is one that has a high probability of finding an
as-yet-undiscovered error.

A successful test is one that uncovers an as-yet-undiscovered error.

Objective is to Find maximum number of errors in the source code within
minimum amount of time and minimum amount of effort.

Once source code has been generated, software must be tested to uncover (and

correct) as many errors as possible before delivery to the customer. The goal is

to design a series of test cases that have a high likelihood of finding errors.

Testing Principles

 All tests should be traceable to customer requirements.
 Tests should be planned long before testing begins.
 The Pareto principle applies to software testing.
 Testing should begin “in the small” and progress toward testing “in the

large.”
 Exhaustive testing is not possible.
 To be most effective, testing should be conducted by an independent

third party.



Testability

Software testability is simply how easily [a computer program] can be tested.

Operability. "The better it works, the more efficiently it can be tested."

Observability. "What you see is what you test."

Controllability. "The better we can control the software, the more the testing
can be automated and optimized."

Decomposability. "By controlling the scope of testing, we can more quickly
iso-late problems and perform smarter retesting."

Simplicity. "The less there is to test, the more quickly we can test it."

Stability. "The fewer the changes, the fewer the disruptions to testing."

Understandability. "The more information we have, the smarter we will
test."

TEST CASE DESIGN

Any engineered product (and most other things) can be tested in one of two
ways:

(1) Knowing the specified function that a product has been designed to

perform, tests can be conducted that demonstrate each function is fully

operational while at the same time searching for errors in each function; 

(2) Knowing the internal workings of a product, tests can be conducted to

ensure that "all gears mesh," that is, internal operations are performed

according to specifications and all internal components have been

adequately exercised. 

The first test approach is called black-box testing and the second,

white-box testing.



SOFTWARE TESTING TECHNIQUES

Black-box  and  White-box testing

When computer software is considered, Black-box testing alludes to tests that

are conducted at the software interface. Although they are designed to uncover

errors, black-box tests are used to demonstrate that software functions are

operational, that input is properly accepted and output is correctly produced,

and that the integrity of external information (e.g., a database) is maintained. 

A black-box test examines some fundamental aspect of a system with little

regard for the internal logical structure of the software.

White-box testing of software is predicated on close examination of procedural

detail. Logical paths through the software are tested by providing test cases

that exercise specific sets of conditions and/or loops. The "status of the

program" may be examined at various points to determine if the expected or

asserted status corresponds to the actual status.

White-box Testing

White-box testing, sometimes called glass-box testing, is a test case design

method that uses the control structure of the procedural design to derive test

cases. Using white-box testing methods, the software engineer can derive test

cases that (1) guarantee that all independent paths within a module have been

exercised at least once, exercise all logical decisions on their true and false



sides, (3) execute all loops at their boundaries and within their operational

bounds, and (4) exercise internal data structures to ensure their validity.

The goal is to remove the errors of the following kinds:

 Logic errors and incorrect assumptions are inversely proportional to the
probability that a program path will be executed.

 We often believe that a logical path is not likely to be executed when, in
fact, it may be executed on a regular basis.

 Typographical errors are random.

1) BASIS PATH TESTING

Basis path testing is a white-box testing technique. The basis path method

enables the test case designer to derive a logical complexity measure of a

procedural design and use this measure as a guide for defining a basis set of

execution paths. Test cases derived to exercise the basis set are guaranteed to

execute every statement in the program at least one time during testing.

1).1) Flow Graph Notation

Before the basis path method can be introduced, a simple notation for the
representation of control flow, called a flow graph (or program graph) must be
introduced. The flow graph depicts logical control flow using the notation
illustrated in Figure. Each structured construct has a corresponding flow
graph symbol.



Figure. Flow Graph Notation

Each circle, called a flow graph node, represents one or more procedural

statements. A sequence of process boxes and a decision diamond can map into

a single node. The arrows on the flow graph, called edges or links, represent

flow of control and are analogous to flowchart arrows. An edge must terminate
at a node, even if the node does not represent any procedural statements (e.g.,
see the symbol for the if-then-else construct). Areas bounded by edges and

nodes are called regions. When counting regions, we include the area outside

the graph as a region.

When compound conditions are encountered in a procedural design, the

generation of a flow graph becomes slightly more complicated. A compound

condition occurs when one or more Boolean operators (logical OR, AND, NAND,

NOR) is present in a conditional statement. The PDL segment translates into

the flow graph. Note that a separate node is created for each of the conditions,

each node that contains a condition is called a predicate node and is

characterized by two or more edges emanating from it.



STEPS:
1. Using Design or Code draw the corresponding Flow Graph
2. Draw the Decision to Decision Path Graph
3. Determine the Cyclometric Complexity
4. Determine a basis set of independent paths
5. Prepare  test cases that will force execution of each path in the basis set.

Control Flow Graph:

Describes how the control flows through the programs.

This is analyzed using a graphical representation known as a flow graph. The
flow graph is a directed graph in which node represents the statement, edges
represent the flow of control.

Decision to Decision Path Graph:

Draw a Decision to Decision Path Graph from flow graph.

Concentrate only on decision nodes.

The nodes of a flow graph, which are in a sequence are combined in to a single
node.

Decision to Decision Path Graph is a Directed Graph in which the nodes
represent the sequence of statements and the edges represents the control flow
between the nodes.

Independent Path Graph:

To find the Independent paths, execute all independent paths atleast once
during path testing.



It is to ensure that, i) every program statement is executed atleast once ii) every
branch has been exercised for True and False condition. 

Cyclomatic Complexity

Cyclomatic complexity is a software metric that provides a quantitative measure

of the logical complexity of a program. When used in the context of the basis

path testing method, the value computed for cyclomatic complexity defines the

number of independent paths in the basis set of a program and provides us

with an upper bound for the number of tests that must be conducted to ensure

that all statements have been executed at least once.

An independent path is any path through the program that introduces at least
one new set of processing statements or a new condition. When stated in terms
of a flow  graph, an independent path must move along at least one edge that
has not been traversed before the path is defined. 

How do we know how many paths to look for? The computation of cyclomatic

complexity provides the answer.

Cyclomatic complexity has a foundation in graph theory and provides us with
an extremely useful software metric. Complexity is computed in one of three
ways:

Cyclomatic complexity, V(G), for a flow graph, G, is defined as 

V(G) = E - N + 2

(where E is the number of flow graph edges, N is the number of flow graph
nodes.)

Cyclomatic complexity, V(G), for a flow graph, G, is also defined

as V(G) = P + 1



where P is the number of predicate nodes contained in the flow graph G.

Cyclomatic complexity, V(G), for a flow graph, G, is also defined

as V(G) = Total number of Regions

Example 



The above Triangle program has 19 statements. 



Above Diagram is the Control Flow Graph for the Triangle Program, which has
20 edges and 17 nodes (except source and sink nodes).



This above Diagram converts Control Flow Graph to Decision to Decision Path
Graph.



The above Diagram states that B,F,H,J are the Predicate Nodes. The next
diagram shows the total Number of Regions. 

Cyclomatic complexity for our Triangle Program is,

Method 1: Cyclomatic complexity V(G) = e-n+2 = 20-17+2 = 5



Method 2: Cyclomatic complexity V(G) = P + 1 = 4 + 1 = 5

Method 3: Cyclomatic complexity V(G) = No. of Regions =  5

The Above Diagram shows the Independent paths.



The above Diagram shows the Test Cases for the Triangle Program.

CONTROL STRUCTURE TESTING

The basis path testing technique described in Section 17.4 is one of a number

of techniques for control structure testing. Although basis path testing is

simple and highly effective, it is not sufficient in itself. In this section, other

variations on control structure testing are discussed. These broaden testing

coverage and improve quality of white-box testing.

Condition Testing

Condition testing is a test case design method that exercises the logical

conditions contained in a program module. A simple condition is a Boolean



variable or a relational expression, possibly preceded with one NOT (¬)

operator. A relational expression takes the form

E1 <relational-operator> E2

where E1 and E2 are arithmetic expressions and <relational-operator> is one of

the following: <, ≤, =, ≠ (non equality), >, or ≥. A compound condition is
composed of two or more simple conditions, Boolean operators, and
parentheses. We assume that Boolean operators allowed in a compound
condition include OR (|), AND (&) and NOT (¬). A condition without relational
expressions is referred to as a Boolean expression. Therefore, the possible types
of elements in a condition include a Boolean operator, a Boolean variable, a
pair of Boolean parentheses (surrounding a simple or compound condition), a
relational operator, or an arithmetic expression.

Branch testing is probably the simplest condition testing strategy. For a

compound condition C, the true and false branches of C and every simple

condition in C need to be executed at least once.

Domain testing requires three or four tests to be derived for a relational

expression. For a relational expression of the form

E1 <relational-operator> E2

three tests are required to make the value of E1 greater than, equal to, or less
than that of E2]. If <relational-operator> is incorrect and E1 and E2 are correct,
then these three tests guarantee the detection of the relational operator error.
To detect errors in E1 and E2, a test that makes the value of E1 greater or less
than that of E2 should make the difference between these two values as small
as possible.



For a Boolean expression with n variables, all of 2n possible tests are
required (n > 0). This strategy can detect Boolean operator, variable, and
parenthesis errors, but it is practical only if n is small.

Data Flow Testing

The data flow testing method selects test paths of a program according to the

locations of definitions and uses of variables in the program. 

To illustrate the data flow testing approach, assume that each statement in a

program is assigned a unique statement number and that each function does

not modify its parameters or global variables. For a statement with S as its

statement number,

DEF(S) = {X | statement S contains a definition of X}

USE(S) = {X | statement S contains a use of X}

If statement S is an if or loop statement, its DEF set is empty and its USE set is

based on the condition of statement S. The definition of variable X at statement

S is said to be live at statement S' if there exists a path from statement S to

statement S' that contains no other definition of X.

A definition-use (DU) chain of variable X is of the form [X, S, S'], where S and

S' are statement numbers, X is in DEF(S) and USE(S'), and the definition of X in

statement S is live at statement S'.

One simple data flow testing strategy is to require that every DU chain be

covered at least once. We refer to this strategy as the DU testing strategy. It has

been shown that DU testing does not guarantee the coverage of all branches of



a program. How-ever, a branch is not guaranteed to be covered by DU testing

only in rare situations such as if-then-else constructs in which the then part

has no definition of any variable and the else part does not exist. In this

situation, the else branch of the if statement is not necessarily covered by DU

testing.

Loop Testing

Loops are the cornerstone for the vast majority of all algorithms implemented

in software. And yet, we often pay them little heed while conducting software

tests.

Loop testing is a white-box testing technique that focuses exclusively on the

validity of loop constructs. Four different classes of loops can be defined:

simple loops, concatenated loops, nested loops, and unstructured loops.



Figure. Classes of Loops



BLACK BOX TESTING 

Black-box testing, also called behavioral testing, focuses on the functional
requirements of the software. That is, black-box testing enables the software
engineer to derive sets of input conditions that will fully exercise all functional
requirements for a program.

Black box testing derive test cases from functional specification of the
software. Focus is on behavior of the software and efficiency of the
performance. Concentrates only on input and output of the software
functionality. This can be applied for both functional and non functional mode
of the software testing.

BLACK BOX TESTING TECHNIQUES

1. Equivalence Partitioning

It is a black box testing technique Where the set of test case applications
divided into logical groups called partitions which exhibits similar
behavior when processed. Each partition covers specific aspect of the
application. We are not testing all conditions but one condition from each
partition is tested.

For Example, In an application, User name allows numeric means we are
not testing all numeric values instead we are testing one or two numeric
values which means it will allow all the numeric values.

User name allows Alphabets means we are not testing all alphabets
instead we are testing one or two alphabets which means it will allow all
the alphabets.



2. Boundary Value Analysis

To assist the input at boundary of the each equivalence partition uses
boundary value analysis black box testing technique. Behavior of the test
input is incorrect when the partition change from one to another, which
leads to find most defects of the application.

For Example,  Input between 0 and 100 means we are testing the
boundary values of 0 and 100.

ie., ( -1 and 0 and +1 ) and (99 and 100 and 101 )

3. Comparison Testing

There are some situations (e.g., aircraft avionics, automobile braking
systems) in which the reliability of software is absolutely critical. In such
applications redundant hardware and software are often used to
minimize the possibility of error. When redundant software is developed,
separate software engineering teams develop independent versions of an
application using the same specification. In such situations, each version
can be tested with the same test data to ensure that all provide identical
output. Then all versions are executed in parallel with real-time
comparison of results to ensure consistency.

To manage redundant systems, independent versions of software be
developed for critical applications, even when only a single version will be
used in the delivered computer-based system. These independent
versions form the basis of a black-box testing technique called
comparison testing or back-to-back testing.

SOFTWARE TESTING STRATEGIES



The strategy provides a road map that describes the steps to be conducted as
part of testing, when these steps are planned and then undertaken, and how
much effort, time, and resources will be required.

Therefore, any testing strategy must incorporate test planning, test case
design, test execution, and resultant data collection and evaluation.

Verification and Validation Testing

Verification refers to the set of activities that ensure that software correctly
implements a specific function. 

Validation refers to a different set of activities that ensure that the software that
has been built is traceable to customer requirements. 

A Software Testing Strategy



Figure. Software Testing Strategy

Initially, system engineering defines the role of software and leads to software

requirements analysis, where the information domain, function, behavior,
performance, constraints, and validation criteria for software are established.
Moving inward along the spiral, we come to design and finally to coding. To
develop computer software, we spiral inward along streamlines that decrease
the level of abstraction on each turn.

A strategy for software testing may also be viewed in the context of the spiral
(Refer above Figure). Unit testing begins at the vortex of the spiral and
concentrates on each unit (i.e., component) of the software as implemented in
source code. Testing progresses by moving outward along the spiral to
integration testing, where the focus is on design and the construction of the
software architecture. Taking another turn outward on the spiral, we encounter
validation testing, where requirements established as part of software
requirements analysis are validated against the software that has been
constructed.



Finally, we arrive at system testing, where the software and other system
elements are tested as a whole. To test computer software, we spiral out along
streamlines that broaden the scope of testing with each turn.

I) UNIT TESTING
Unit testing focuses verification effort on the smallest unit of software
design—the software component or module. Using the component-level
design description as a guide, important control paths are tested to uncover
errors within the boundary of the module. The relative complexity of tests and
uncovered errors is limited by the constrained scope established for unit
testing. The unit test is white-box oriented, and the step can be conducted
in parallel for multiple components.

The tests that occur as part of unit tests are illustrated schematically in the
below Figure. The module interface is tested to ensure that information properly
flows into and out of the program unit under test. The local data structure is
examined to ensure that data stored temporarily maintains its integrity during all
steps in an algorithm's execution.

Boundary conditions are tested to ensure that the module operates properly at
boundaries established to limit or restrict processing. All independent paths
(basis paths) through the control structure are exercised to ensure that all
statements in a module have been executed at least once. And finally, all error
handling paths are tested.

A component is not a stand-alone program, driver and/or stub software must
be developed for each unit test. The unit test environment is illustrated in the
below Figure.

In most applications a driver is nothing more than a "main program" that accepts
test case data, passes such data to the component (to be tested), and prints
relevant results. Stubs serve to replace modules that are subordinate (called by)
the component to be tested. A stub or "dummy subprogram" uses the



subordinate module's interface, may do minimal data manipulation, prints
verification of entry, and returns control to the module undergoing testing.

Figure. Unit Testing



Figure. Unit Test Environment

II) INTEGRATION TESTING

The problem of  putting  units together causes interfacing. Data can be lost
across an interface; one module can have an inadvertent, adverse affect on
another; sub-functions, when combined, may not produce the desired major
function;

Integration testing is a systematic technique for constructing the
program structure while at the same time conducting tests to uncover
errors associated with interfacing. The objective is to take unit tested
components and build a program structure that has been dictated by design.

2.1) TOP-DOWN INTEGRATION TESTING

Top-down integration testing is an incremental approach to construction of
program structure. Modules are integrated by moving downward through the



control hierarchy, beginning with the main control module (main program).
Modules subordinate (and ultimately subordinate) to the main control module
are incorporated into the structure in either a depth-first or breadth-first
manner.

Referring to Figure below, depth-first integration would integrate all
components on a major control path of the structure. Selection of a major
path is somewhat arbitrary and depends on application-specific characteristics.
For example, selecting the left-hand path, components M1, M2 , M5 would be

integrated first. Next, M8 or (if necessary for proper functioning of M2) M6

would be integrated. Then, the central and right hand control paths are built.
Breadth-first integration incorporates all components directly
subordinate at each level, moving across the structure horizontally. From
the below figure, components M2, M3, and M4 (a replacement for stub S4)
would be integrated first. The next control level, M5, M6, and so on, follows.

Figure. Top down integration testing

The integration process is performed in a series of five steps:

1. The main control module is used as a test driver and stubs are substituted
for all components directly subordinate to the main control module.
2. Depending on the integration approach selected (i.e., depth or breadth first),
subordinate stubs are replaced one at a time with actual components.
3. Tests are conducted as each component is integrated.



4. On completion of each set of tests, another stub is replaced with the real
component.
5. Regression testing  may be conducted to ensure that new
errors have not been introduced.

The process continues from step 2 until the entire program structure is built. 

2.2) BOTTOM-UP INTEGRATION TESTING

Bottom-up integration testing, as its name implies, begins construction and
testing with atomic modules (i.e., components at the lowest levels in the
program structure). Because components are integrated from the bottom up,
processing required for components subordinate to a given level is always
available and the need for stubs is eliminated.



Figure. Bottom up integration testing

A bottom-up integration strategy may be implemented with the following steps:

1)Low-level components are combined into clusters (sometimes called
builds) that perform a specific software sub-function.

 2)A driver (a control program for testing) is written to coordinate test
case input and output.
3)The cluster is tested.
4)Drivers are removed and clusters are combined moving upward in the
program structure.

Integration follows the pattern illustrated in the above Figure. Components are
combined to form clusters 1, 2, and 3. Each of the clusters is tested using a
driver (shown as a dashed block). Components in clusters 1 and 2 are



subordinate to Ma. Drivers D1 and D2 are removed and the clusters are
interfaced directly to Ma. Similarly, driver D3 for cluster 3 is removed prior to
integration with module Mb. Both Ma and Mb will ultimately be integrated with
component Mc, and so forth.

Each time a new module is added as part of integration testing, the software
changes. New data flow paths are established, new I/O may occur, and new
control logic is invoked. These changes may cause problems with functions
that previously worked flawlessly. 

2.3) REGRESSION TESTING

In the context of an integration test strategy, regression testing is the        
re-execution of some subset of tests that have already been conducted to
ensure that changes have not propagated unintended side effects.

Regression testing may be conducted manually, by re-executing a subset of all
test cases or using automated capture/playback tools. Capture/playback tools
enable the software engineer to capture test cases and results for subsequent
playback and comparison.

The regression test suite (the subset of tests to be executed) contains three
different classes of test cases:

• A representative sample of tests that will exercise all software functions.

• Additional tests that focus on software functions that are likely to be affected 

  by the change.

• Tests that focus on the software components that have been changed.



2.4) SMOKE TESTING

Smoke testing is an integration testing approach that is commonly used when
“shrink wrapped” software products are being developed. It is designed as a
pacing mechanism for time-critical projects, allowing the software team to
assess its project on a frequent basis.

The smoke testing approach encompasses the following activities:

1) Software components that have been translated into code are integrated
into a “build.”

2) A series of tests is designed to expose errors that will keep the build from
        properly performing its function.

3) The build is integrated with other builds and the entire product (in its
current form) is smoke tested daily. The integration approach may be top
down or bottom up.

III) VALIDATION TESTING

Validation can be defined in many ways, but a simple definition is that
validation succeeds when software functions in a manner that can be
reasonably expected by the customer.

Reasonable expectations are defined in the Software Requirements
Specification—a document that describes all user-visible attributes of the
software. The specification contains a section called Validation Criteria.



Information contained in that section forms the basis for a validation testing
approach.

Software validation is achieved through a series of black-box tests that
demonstrate conformity with requirements. A test plan outlines the classes of
tests to be conducted and a test procedure defines specific test cases that will
be used to demonstrate conformity with requirements. Both the plan and
procedure are designed to ensure that all functional requirements are satisfied,
all behavioral characteristics are achieved, all performance requirements are
attained, documentation is correct, and human engineered and other
requirements are met (e.g., transportability, compatibility, error recovery,
maintainability).

Alpha and Beta Testing

3.1) Acceptance Testing

When custom software is built for one customer, a series of acceptance tests
are conducted to enable the customer to validate all requirements. Conducted
by the end user rather than software engineers, an acceptance test can range
from an informal "test drive" to a planned and systematically executed series of
tests. In fact, acceptance testing can be conducted over a period of weeks or
months, thereby uncovering cumulative errors that might degrade the system
over time.

3.2) Alpha Testing

The alpha test is conducted at the developer's site by a customer. The software
is used in a natural setting with the developer "looking over the shoulder" of
the user and recording errors and usage problems. Alpha tests are conducted
in a controlled environment.



3.3) Beta Testing

The beta test is conducted at one or more customer sites by the end-user of the

software. Unlike alpha testing, the developer is generally not present.
Therefore, the beta test is a "live" application of the software in an environment
that cannot be controlled by the developer. The customer records all problems
(real or imagined) that are encountered during beta testing and reports these to
the developer at regular intervals. As a result of problems reported during beta
tests, software engineers make modifications and then prepare for release of
the software product to the entire customer base.

IV) SYSTEM TESTING

System testing is actually a series of different tests whose primary purpose is
to fully exercise the computer-based system. Although each test has a different
purpose, all work to verify that system elements have been properly integrated
and perform allocated functions.

Types of system tests :

4.1) Recovery testing is a system test that forces the software to fail in a
variety of ways and verifies that recovery is properly performed. If recovery is
automatic (performed by the system itself), re initialization, check pointing
mechanisms, data recovery, and restart are evaluated for correctness. If
recovery requires human intervention, the mean-time-to-repair (MTTR) is
evaluated to determine whether it is within acceptable limits.

4.2) Security testing attempts to verify that protection mechanisms built into
a system will, in fact, protect it from improper penetration.



4.3) Stress testing executes a system in a manner that demands resources in
abnormal quantity, frequency, or volume.

A variation of stress testing is a technique called sensitivity testing.

4.4) Sensitivity testing attempts to uncover data combinations within valid
input classes that may cause instability or improper processing.

4.5) Performance testing is designed to test the run-time performance of
software within the context of an integrated system. Performance testing occurs
throughout all steps in the testing process.

Performance tests are often coupled with stress testing and usually require
both hardware and software instrumentation. That is, it is often necessary to
measure resource utilization (e.g., processor cycles) in an exacting fashion.

Testing Strategies for Object Oriented Software

I) Unit Testing in the Object Oriented Context.
With Object Oriented the concept of unit changes.

Because of the dependence of sub classes, unit testing is bit more 
complicated.

In the Object Oriented Context, unit testing is basically Class Testing.

II) Integration Testing in the Object Oriented Context.
Object Oriented programming does not have an hierarchical control
structure. 

Integrating one object at a time is also difficult because of the direct
and indirect interactions of the components that make up the class.

There are two basic strategies:



1) Thread based
 Integrates the set of classes required to respond to one input or

event for the system
 Each thread is integrated and tested individually
 Regression testing is applied to ensure no side effects occur.

2) Use based
 Testing begins the construction of system by testing those

classes that use very few server classes.
 After independent classes, the next layer of classes, called

dependent classes are tested.
 This continues until the entire system is constructed.

3) Drivers and Stubs
Drivers can be used to test operations at the lowest level and for 

testing group of classes.

A Driver may be used to replace the user interface. 

Stubs may be used where collaboration between classes is required
but one or more of the collaborating classes is not fully
implemented.

4) Cluster Testing 
It is one step in integration testing of Object Oriented software.

Here, a cluster of collaborating classes are exercised by designing  

test cases that attempt to uncover errors in the collaborations.

The Art of Debugging

Debugging occurs as a consequence of successful testing. That is, when a test
case uncovers an error, debugging is the process that results in the removal of
the error.



In general, three categories in approach for debugging are : (1) brute force, (2)
backtracking, and (3) cause elimination.

We apply brute force debugging methods when all else fails. Using a "let the
computer find the error" philosophy, memory dumps are taken, run-time traces
are invoked, and the program is loaded with WRITE statements.                    
CLUE for Errors are Find.

Backtracking, Beginning at the site where a symptom has been uncovered,

the source code is traced backward (manually) until the site of the cause is
found.

cause elimination  forms a cause hypothesis. Alternatively, a list of all
possible causes is developed and tests are conducted to eliminate each.

UNIT - V

SOFTWARE CONFIGURATION MANAGEMENT

SOFTWARE CONFIGURATION

The output of a software process is information that may be divided in to three
broad categories:

1) Computer programs (both source level and executable)



2) Work products that describe the computer programs (targeted at both
technical and end users)

3) Data (contained within the program or external to it)

The items that comprise all the information produced as part of software
process are collectively called as software configuration.

CONFIGURATIONMANAGEMENT

Definition:

The set of activities that have been developed to manage change throughout the
software lifecycle.

Purpose:

Systematically control changes to the configuration and maintain the integrity
and traceability of the configuration throughout the system's lifecycle.

Software Configuration Management (SCM):

It is an umbrella activity that is applied throughout the software process.

Because change can occur anytime, SCM activities are developed to:

1) Identify change

2) Control change

3) Ensure that change is being properly implemented

4) Report changed to others who have interest.

ORIGIN OF THESE CHANGES:

New business or market conditions bring changes in product requirements.



New customer needs demand modification of functionality delivered by the
products or services delivered by the computer based system.

Reorganization or business growth causes changes in project priorities or
software engineering team structure.

Budgetary constraints cause a change in the definition of the system.

WHY CHANGE HAPPENS?

Change is a fact of life in software development.

Customers want to modify requirements.

Developers want to modify the technical approach.

Managers want to modify the project strategy

Why all these modifications???

As time passes while building the software, all the people involved in it
come to know more about what they need, which approach will be the best,
how to get it done within time constraints, etc.

This additional knowledge is the driving force behind most changes in
software development.

SOFTWARECONFIGURATIONITEMS (SCI S)

Definition: Information that is created as part of the software engineering
process.

Examples:

Software Project Plan

Software Requirements Specification

Models, Prototypes, Requirements



Design document

Protocols, Hierarchy Graphs

Source code

Modules

Test suite

Software tools(e.g., compilers)

BASELINES

A Baseline is a software configuration management concept that helps us
to control change.

Specification or product that has been formally reviewed and agreed
upon, Serves as the basis for further development, and can be changed only
through formal change control procedures.

Signals a point of departure from one activity to the start of another
activity.

Helps control change without impeding justifiable change.

PROJECT BASELINE

Central repository of reviewed and approved artifacts that represent a given
stable point in overall system development.

Shared Database for project and kept in consistent state.

Policies allow the team to achieve consistent state and manage the project.



BASELINE PROCESS

1. A series of software engineering tasks produces an SCI

2. The SCI is reviewed and possibly approved.

3. The approved SCI is given a new version number and placed in a project   

    database (i.e., software repository)

4. A copy of the SCI is taken from the project data base and
examined/modified  

    by a software engineer

5. The base line of the modified SCI goes back to Step 2



Figure. The Baseline Process

ELEMENTS OF SCM

The Four Elements of SCM are,

Software configuration Identification 

Software configuration Control 

Software configuration Auditing 

Software configuration Status Reporting 



THE SCM PROCESS

The SCM process defines a series of tasks:

Identification of objects in the software configuration Version Control

Change Control

Configuration Audit, and Reporting

Figure. The SCM Process

SCM PROCESS:

IDENTIFICATION

Provides labels for the base lines and their updates.

Evolution graph : depicts versions/variants.

An object may be represented by variant, versions, and components.



Figure. Evolution Graph - Object versions

Two types of objects can be identified as,

• Basic objects, and

• Aggregate objects

A basic object is a unit of information created by a software engineer
during analysis, design, code, or test.

For example, a basic object might be a section of requirement
specification, part of design model, source code for a component, etc.

An aggregate object is a collection of basic objects and other aggregate
objects.

Each object has a set of distinct features that identify it:

A name that is unambiguous to all other objects

A description that contains the CSCI type, a project identifier ,and change
and/or version information

List of resources needed by the object

The object realization (i.e., the document, the file, the model, etc.)

SOFTWARE CONFIGURATION CONTROL

Three basic things to SCC

• Documentation for formally precipitating and defining a proposed change to a
software system.



• An organizational body (Configuration Control Board) for formally
evaluating and approving or disapproving a proposed change to a software
system.

• Procedures for controlling changes to a software system.

Why is this needed?

Not all possible changes are beneficial.

Need a mechanism control to access different items (who can access what).

CHANGE CONTROL - ACCESS CONTROL AND SYNCHRONIZATION
CONTROL

The "check-in" and "check-out" process implements two important elements of
change control—access control and synchronization control. Access control
governs which software engineers have the authority to access and modify a
particular configuration object. Synchronization control helps to ensure that
parallel changes, performed by two different people, don't overwrite one
another. 

Access and synchronization control flow are illustrated schematically in Figure
below. Based on an approved change request and ECO, a software engineer
checks out a configuration object. An access control function ensures that the
software engineer has authority to check out the object, and synchronization
control locks the object in the project database so that no updates can be made
to it until the currently checked out version has been replaced. Note that other
copies can be checked-out, but other updates cannot be made. A copy of the
base lined object, called the extracted version, is modified by the software
engineer. After appropriate SQA and testing, the modified version of the object
is checked in and the new baseline object is unlocked.



Figure. Access and Synchronization control

Configuration Management Cycle

Configuration Manager – is the in charge of administrating project database
and providing access control to engineers.



Figure. Configuration Management Cycle 

SOFTWARE  CONFIGURATION  AUDITING

Provides mechanism for determining the degree to which the current
configuration of the software system mirrors the software system pictured in
the baseline and the requirements documentation.

Ask the following questions:

• Has the specified change been made?

• Has a formal technical review been conducted to assess technical
correctness?

• Has the software process been followed and standards been applied?

• Have the SCM procedures for noting the change, recording it, and
reporting it been followed?

• Have all related SCIs been properly updated?



SOFTWARE CONFIGURATION STATUS REPORTING

Provides a mechanism for maintaining a record of where the system is at any
point with respect to what appears in published baseline documentation.

When a change proposal is approved it may take some time before the change
is initiated or completed.

VERSION CONTROL

The core mission of a version control system is to enable collaborative editing
and sharing of data.

File sharing is the most common problem faced by all version control systems,
so most of the systems use Version Control with Subversion.

For this the solutions can be:

• Lock-Modify-Unlock Solution

• Copy-Modify-Merge Solution

The Problem of File Sharing



Lock – Modify – Unlock Solution



Copy – Modify – Merge Solution



Copy – Modify – Merge Solution



SOFTWARE QUALITY ASSURANCE (SQA)

SOFTWARE QUALITY ASSURANCE

1. Software requirements are the foundation from which quality is
measured.

2. Specified standards define a set of development criteria that guide the
manner in which software is engineered.

3. A set of implicit requirements often goes unmentioned (e.g., the desire for
ease of use and good maintainability).

The SQA group serves as the customer's in-house representative. That is, the
people who perform SQA must look at the software from the customer's point of
view.

SQA Activities



SQA group that has responsibility for quality assurance planning, oversight,
record keeping, analysis, and reporting.

1) Prepares an SQA plan for a project.
The plan identifies
• evaluations to be performed
• audits and reviews to be performed
• standards that are applicable to the project
• procedures for error reporting and tracking
• documents to be produced by the SQA group
• amount of feedback provided to the software project team

2) SQA group Participates in the development of the project’s software
process description.

3) Reviews software engineering activities to verify compliance with the
defined software process.

4) Audits designated software work products to verify compliance with
those defined as part of the software process.

5) Ensures that deviations in software work and work products are
documented and handled according to a documented procedure. 

6) Records any noncompliance and reports to senior management. 

Software reviews:

Software reviews are a "filter" for the software engineering process. That is,
reviews are applied at various points during software development and serve
to uncover errors and defects that can then be removed. Software reviews
"purify" the software engineering activities that we have called analysis, design,
and coding.

A review—any review—is a way of using the diversity of a group of people to:
1. Point out needed improvements in the product of a single person or team;
2. Confirm those parts of a product in which improvement is either not desired
or not needed;
3. Achieve technical work of more uniform, or at least more predictable, quality
than can be achieved without reviews, in order to make technical work more
manageable.

Defect Amplification and Removal
A defect amplification model can be used to illustrate the generation and



detection of errors during the preliminary design, detail design, and coding
steps of the software engineering process.

Formal Technical Review (FTR) :
A formal technical review is a software quality assurance activity performed by
software engineers (and others). 
The objectives of the FTR are,
(1) to uncover errors in function, logic, or implementation for any
representation of the software; 
(2) to verify that the software under review meets its requirements; 
(3) to ensure that the software has been represented according to predefined
standards; 
(4) to achieve software that is developed in a uniform manner; and 
(5) to make projects more manageable. 

In addition, the FTR serves as a training ground, enabling junior engineers to
observe different approaches to software analysis, design, and implementation.

Review Meeting:
Regardless of the FTR format that is chosen, every review meeting should abide
by the following constraints:
• Between three and five people (typically) should be involved in the review.
• Advance preparation should occur but should require no more than two
hours of work for each person.
• The duration of the review meeting should be less than two hours.

The individual who has developed the work product—the producer—informs the
project leader that the work product is complete and that a review is required. 

The project leader contacts a review leader, who evaluates the product for
readiness, generates copies of product materials, and distributes them to two
or three reviewers for advance preparation. 

Each reviewer is expected to spend between one and two hours reviewing the
product, making notes, and otherwise becoming familiar with the work.

Concurrently, the review leader also reviews the product and establishes an
agenda for the review meeting, which is typically scheduled for the next day.

The review meeting is attended by the review leader, all reviewers, and the
producer.



One of the reviewers takes on the role of the recorder; that is, the individual
who records (in writing) all important issues raised during the review. 

The FTR begins with an introduction of the agenda and a brief introduction by
the producer. The producer then proceeds to "walk through" the work product,
explaining the material, while reviewers raise issues based on their advance
preparation. When valid problems or errors are discovered, the recorder notes
each.

At the end of the review, all attendees of the FTR must decide whether to (1)
accept the product without further modification, (2) reject the product due to
severe errors (once corrected, another review must be performed), or (3) accept
the product provisionally (minor errors have been encountered and must be
corrected, but no additional review will be required). The decision made, all
FTR attendees complete a sign-off, indicating their participation in the review
and their concurrence with the review team's findings.

Review Reporting and Record Keeping
During the FTR, a reviewer (the recorder) actively records all issues that have
been raised. These are summarized at the end of the review meeting and a
review issues list is produced. In addition, a formal technical review summary
report is completed.

A review summary report answers three questions:
1. What was reviewed?
2. Who reviewed it?
3. What were the findings and conclusions?

The review issues list serves two purposes: (1) to identify problem areas within
the product and (2) to serve as an action item checklist that guides the
producer as corrections are made. An issues list is normally attached to the
summary report.

Review Guidelines
1) Review the product, not the producer.
2) Set an agenda and maintain it.
3) the issues should be recorded for further discussion
4) Express problem areas, but don't attempt to solve every problem noted.
5) Take written notes.
6) Limit the number of participants and insist upon advance preparation.
7) Develop a checklist for each product that is likely to be reviewed.
8) Allocate resources and schedule time for FTRs.
9) Conduct meaningful training for all reviewers.



10) Review your early reviews.

Statistical quality assurance:

Statistical quality assurance reflects a growing trend throughout industry to
become more quantitative about quality. For software, statistical quality
assurance implies the following steps:
1. Information about software defects is collected and categorized.
2. An attempt is made to trace each defect to its underlying cause (e.g.,
nonconformance to specifications, design error, violation of standards, poor
communication with the customer).
3. Using the Pareto principle (80 percent of the defects can be traced to 20
percent of all possible causes), isolate the 20 percent (the "vital few").
4. Once the vital few causes have been identified, move to correct the problems
that have caused the defects.

The number of serious errors,  number of moderate errors,  number of minor
errors and size of the product (LOC, design statements, pages of
documentation) taken for consideration in the data collection of statistical SQA.

The application of the statistical SQA and the Pareto principle can be
summarized in a single sentence: Spend your time focusing on things that really
matter, but first be sure that you understand what really matters!

Software Reliability :
Software reliability, unlike many other quality factors, can be measured
directed and estimated using historical and developmental data.           
Software reliability is defined in statistical terms as "the probability of
failure-free operation of a computer program in a specified environment for a
specified time"

THE ISO 9000 QUALITY STANDARDS

A quality assurance system may be defined as the organizational structure,
responsibilities, procedures, processes, and resources for implementing quality
management. It covers product’s entire life cycle including planning,
controlling, measuring, testing and reporting, and improving quality levels
throughout the development and manufacturing process.

The ISO 9000 quality assurance models treat an enterprise as a network of
interconnected processes. For a quality system to be ISO compliant, these
processes must address the areas identified in the standard and must be
documented and practiced as described.



The ISO 9001 Standard
ISO 9001 is the quality assurance standard that applies to software
engineering. The standard contains 20 requirements that must be present for
an effective quality assurance system. Because the ISO 9001 standard is
applicable to all engineering disciplines, a special set of ISO guidelines (ISO
9000-3) have been developed to help interpret the standard for use in the
software process.

SQA PLAN
The SQA Plan provides a road map for instituting software quality assurance.
Developed by the SQA group, the plan serves as a template for SQA activities
that are instituted for each software project.

The documentation section describes each of the work products produced as
part of the software process. These include

• project documents (e.g., project plan)
• models (e.g., ERDs, class hierarchies)
• technical documents (e.g., specifications, test plans)
• user documents (e.g., help files)

In addition, this section defines the minimum set of work products that are
acceptable to achieve high quality.

The reviews and audits section of the plan identifies the reviews and audits

The test section references the Software Test Plan and Procedure. It also defines
test record-keeping requirements.

The remainder of the SQA Plan identifies the tools and methods that support
SQA activities and tasks and references software configuration management
procedures for controlling change.


